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ABSTRACT
Apomixis, the reproduction via asexually formed seed, is taxonomically scattered in angiosperms. 
Here we review the major developmental pathways to apomixis and the occurrences on the 
level of orders and families. We provide surveys of large families for which occurrences and 
evolutionary pathways of apomixis are well documented (Poaceae, Ranunculaceae, 
Plumbaginaceae, Rosaceae, Brassicaceae, Rutaceae, and Asteraceae). Molecular phylogenetic, 
phylogenomic, and cytogenetic studies have confirmed that apomixis frequently arises in 
hybrids, with or without polyploidy. Multiple origins, different developmental pathways, and 
genetic/epigenetic control mechanisms confirm that apomixis is a derived trait. Pollen functions 
are in many taxa maintained for fertilization of polar nuclei and proper endosperm development, 
which allows also for maintenance of facultative sexuality and further intercrossing of lineages. 
This way, apomixis often results in huge and dynamic complexes of numerous hybrid genotypes 
and phenotypes with highly reticulate relationships. Such complexes are successful to establish 
in various habitats and geographical regions. Expression of apomixis appears to be in some 
genera influenced by environmental conditions. The diversity of evolutionary pathways is 
reflected in various, genus-wise taxonomic treatments. Future research is needed to understand 
the short-term evolutionary dynamics, the functional background for apomixis, and the 
long-term evolutionary fates of apomictic lineages.

I.  Introduction

Apomixis, the form of reproduction via asexually 
formed seeds (Asker and Jerling, 1992), is long 
known in angiosperms. Already, Gregor Mendel was 
confronted with unusual inheritance patterns in his 
crossing experiments of sexual and apomictic hawk-
weeds (genus Hieracium s.l.), but only after the dis-
covery of parthenogenesis by Juel in 1898 the modes 
of asexual inheritance became understandable 
(Nogler, 2006). Apomixis attracted early attention of 

developmental biologists, geneticists, and evolutionary 
biologists. Ernst (1918) summarized the major devel-
opmental pathways and recognized that apomixis 
frequently results from interspecific hybridization. 
Gustafsson (1946; 1947a; 1947b), Asker and Jerling 
(1992), Naumova (1993) and Carman (1997) outlined 
the major developmental pathways: gametophytic 
apomixis involves the formation of an unreduced 
embryo sac, either via apospory (from a somatic 
nucellus cell) or via diplospory (from a restitutional 
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meiosis or mitoses of the megaspore mother cell); 
the unreduced egg cell develops without fertilization 
via parthenogenesis. Sporophytic apomixis initiates 
the development of an embryo out of somatic cell 
of ovule, either from the nucellus or the integuments. 
These embryos often form additionally to sexual 
embryos, and therefore this pathway is called adven-
titious embryony. Both gametophytic and sporophytic 
apomixis results in clonal offspring, but often remains 
facultative, i.e. in the same generation the plant 
forms seeds via the normal sexual pathway (with 
meiosis and fertilization of reduced egg cells) and 
apomictic seeds. Moreover, gametophytic apomixis 
can be partial (term after Hojsgaard and Hörandl, 
2019), either with unreduced embryo sac formation 
combined with fertilization of the egg cell (forming 
so-called BIII hybrids) or via haploid parthenogenesis 
(apomeiosis without fertilization). These two path-
ways occur in progenies and in natural populations 
of apomictic taxa usually at very low frequencies 
(Bicknell et  al., 2003; Schinkel et  al., 2017), but they 
may also appear rarely in otherwise obligate sexual 
taxa (Asker and Jerling, 1992).

The evolution of apomictic taxa attracted early atten-
tion in systematics research. The evolution of huge and 
diverse agamic polyploid complexes from hybrids of 
the sexual progenitor species was recognized in the 
example of Crepis (Babcock and Stebbins, 1938). 
Multiple origins of hybrids, Mendelian segregation in 
the first (sexual) hybrid generations, and occasional 
crossings between facultative apomictic lineages have 
often resulted in a huge diversity of lineages with dis-
tinct morphotypes, cytotypes, and ecotypes (Barke 
et  al., 2018; Hojsgaard and Hörandl, 2019). These lin-
eages might be fixed by apomixis as numerous slightly 
distinct clones. This evolutionary pathway to diverse 
apomictic polyploid complexes was described by Grant 
(1981) for many genera and confirmed in numerous 
molecular case studies (reviewed by Hojsgaard and 
Hörandl, 2019). Quite often, more than two progenitor 
species are involved in hybrid origins, thereby increas-
ing genetic and morphological complexity (e.g. Mráz 
et  al., 2019; Karbstein et  al., 2022). Such apomictic 
polyploid complexes do mostly occur in taxa with 
gametophytic apomixis and in allopolyploids, whereas 
autopolyploids usually do not diversify into many dif-
ferent lineages (Hörandl, 2018). In contrast, the asso-
ciation of polyploidy and hybridization to sporophytic 
apomixis is less obvious, although some genera do 
show a high complexity of interspecific relationships, 
e.g. in Citrus (Curk et al., 2016). Nevertheless, in many 
species adventitious embryony appears just as a repro-
ductive feature of traditionally classified species.

The reticulate evolution of such agamic com-
plexes does not fit to traditional phylogenetic con-
cepts of bifurcating phylogenies, and therefore also 
the recognition of relationships of lineages is still 
a methodical challenge, even in the era of genomics. 
Quite often, morphological and genetic data are 
incongruent, or the maternally inherited plastid 
genomes reveal different tree topologies than the 
nuclear genome data. Thus, the nuclear genome 
itself often has a mosaic composition due to hybrid-
ity. Integrative classification concepts, also regarding 
cytology, ecology, biogeography, and other datasets 
are needed (Karbstein et  al., 2024). Most agamic 
complexes are thought to have originated due to 
secondary contact hybridizations in the Pleistocene, 
and are evolutionarily young (Carman, 1997); there-
fore, relationships between taxa are shallow, and a 
good representation of highly resolving genomic 
markers is required to disentangle relationships and 
genetic structure of apomictic taxa. Apomictic lin-
eages belong to taxonomically complex groups 
(TCGs) where artificial intelligence tools could help 
for classification (Karbstein et  al., 2024).

Biogeographical and ecological patterns suggest that 
apomictic taxa occupy larger and more northern dis-
tributions than their sexual relatives (Bierzychudek, 
1985; Hörandl, 2006). The ability of uniparental repro-
duction and side effects of polyploidy enabling 
apomictic plants to conduct ecological niche shifts 
are probably the major drivers for these patterns 
(Hörandl, 2023). The relationships of apomixis to 
environmental factors are not just adaptive; in fact, 
different physiological responses of the plant to cli-
matic or other abiotic stressors appear to be a trigger, 
or at least a modulator for the expression of naturally 
occurring apomixis (Hjelmqvist and Grazi, 1964; 
Klatt et  al., 2016; Klatt et  al., 2018; Karunarathne 
et  al., 2020; Mateo de Arias et  al., 2020; Ulum et  al., 
2020). The functional background and genetic con-
trol of apomixis is complex, and most contemporary 
authors agree on a strong epigenetic component 
related to stress response of plants (Grimanelli, 2012; 
Léon-Martínez and Vielle-Calzada, 2019; Schmidt, 
2020) as a factor for the expression of apomixis. 
Abiotic stress conditions would rather stimulate sexual 
reproduction by reactive oxygen species (ROS)-
induced initialization of meiosis, whereas low-stress 
conditions favor asexual reproduction (e.g. Ulum 
et  al., 2020; Mateo de Arias et  al., 2020). Polyploids 
can regulate stress better than diploids (Fox et  al., 
2020; Van de Peer et  al., 2021), and hence better 
buffered stress conditions in polyploid plants would 
favor apomictic reproduction (Hörandl and Hadacek, 
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2013). This theory is in line with the observed vari-
ation of facultative apomixis and the prevalence of 
polyploidy in apomictic plants. However, the different 
genomic factors (hybridity and polyploidy), genetic 
regulators (gene loci) and epigenetic components are 
not exclusive factors, they probably act in combination 
in a “regulatory landscape” of apomixis, with variable 
proportions of these factors in the respective devel-
opmental pathways (Léon-Martínez and Vielle-Calzada, 
2019). The induction of artificial apomixis via mutant 
approaches or gene editing in crops differs fundamen-
tally from natural origins of apomixis and is beyond 
the scope of this review (see e.g. Scheben and 
Hojsgaard, 2020).

The abundance and wide distribution of apomic-
tic plants require well-founded and practicable clas-
sifications. The diversity of evolutionary processes 
connected to apomixis, and the methodical chal-
lenges to recognize distinct lineages (see above), has 
led to many different opinions regarding species 
delimitation, and various approaches exist to classify 
lineages as species, nothotaxa or as a subspecific 
category (Majeský et  al., 2017; Hörandl 2018; 2022). 
Therefore, most surveys on apomixis are restricted 
to the level of genera (Carman, 1997; Hojsgaard 
et  al., 2014a). Within genera, different specific tax-
onomic concepts exist, depending on the mode and 
stability of apomixis, the evolutionary origin and 
biogeography of the respective taxa (Hörandl, 2018). 
A recent survey on apomixis to the level of species 
used a pragmatic approach by considering accepted 
taxonomic concepts within genera as valid, and 
placed the question whether a unique, universal 
species concept for all apomictic lineages would be 
practicable (Hojsgaard and Pullaiah, 2023). The 
progress in the application of genetic and genomic 
data makes it nowadays possible to recognize the 
genetic structure of apomictic taxa and to disentan-
gle their relationships.

In this review we focus on the progress in under-
standing evolution and phylogenetic patterns of apo-
mixis in angiosperms. An update of occurrences of 
apomixis in orders, and families of angiosperms since 
Hojsgaard and Pullaiah (2023) will provide a phylo-
genetic framework. By reviewing selected families and 
genera expressing apomixis, and with detailed discus-
sion of breeding systems, mode of apomixis, cytology, 
evolution, phylogeny, and taxonomy of well-studied 
genera, we intend to provide a better overview on the 
evolutionary dynamics and species-level diversity that 
is associated with apomixis. With this overview, we 
will discuss options of unified taxonomic concepts 
and perspectives for further research.

II.  Taxonomic distribution and diversity of 
apomixis in angiosperms: an update

Apomixis appears scattered in the phylogeny of angio-
sperms, and in all major groups (basal angiosperms, 
monocots, dicots). The character evolution study on 
the phylogeny of orders by Hojsgaard et  al. (2014a) 
indicates pure sexuality as the ancestral trait in angio-
sperms, with shifts to apomixis occurring in several 
clades, and some possible reversions from apomixis 
to pure sexuality in terminal branches of the phylog-
eny. Hojsgaard et  al. (2014a) listed the occurrence of 
apomixis in 30 orders, 78 families, and 292 genera 
(following classification of Angiosperm Phylogeny 
Group III (Bremer et  al., 2009). The details of this 
literature survey were made available in an online 
database (www.apomixis.uni-goettingen.de). Later, 
Hojsgaard and Pullaiah (2023) discriminated the 
occurrence of apomixis to the species level with reli-
able evidence of apomixis in 32 orders, 73 families, 
and 284 genera (following the classification of APG 
IV (Byng et  al., 2016) and Stevens (2020)); Hörandl 
(2024) updated to 74 families and 299 genera. The 
discrepancies in numbers are mostly due to different 
taxonomic circumscriptions.

Detection of apomixis can be done with various 
methods, depending on the type of apomixis (review 
in Hojsgaard and Pullaiah, 2023). New findings of 
gametophytic apomixis are most efficiently detected 
by large-scale screenings via the flow cytometric seed 
screening (FCSS) method (Matzk et  al., 2000), which 
gives information on both apomeiosis and partheno-
genesis, i.e. functional seed formation. The rationale 
is that after apomeiosis, all nuclei in the embryo sac 
are unreduced, thereby doubling also the ploidy level 
of polar nuclei (subsequently endosperm nuclei) rel-
ative to the egg cell (subsequently forming the embryo 
with or without fertilization). However, interpretation 
of FCSS data requires information on the type of 
embryo sac development (Haig, 2020), because the 
number of polar nuclei is crucial for interpreting the 
endosperm ploidy and consequently the ratio to 
embryo ploidy (Table 1). Moreover, interpretation of 
FCSS patterns can be difficult to interpret in cases of 
autonomous apomixis, because the embryo:endosperm 
ratio is 1:2, which resembles in histograms also G2 
peaks of mitotically dividing cells of the growing 
embryo. This problem appears often in Asteraceae 
and Plumbaginaceae (Limonium) where autonomous 
endosperm formation is common, and endosperm is 
rapidly consumed (Noyes, 2007; Róis et  al., 2016). In 
most other families, autonomous endosperm is 
uncommon because it causes strong deviations from 

http://www.apomixis.uni-goettingen.de
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the optimal 2:1 maternal to paternal genome contri-
butions in endosperm, which has negative effects on 
seed formation (e.g. Spielman et  al., 2003). For such 
FCSS results, independent evidence of apomixis is 
required. In cases of Panicum-type or Eragrostis-type 
embryo sacs, both containing only one polar nucleus, 
pseudogamous apomixis cannot be discriminated from 
sexual development (Hojsgaard and Pullaiah, 2023; 
see Table 1). Furthermore, cases of partial apomixis 
can be misinterpreted because they result in ploidy 
shifts of the embryo and in intermediate embryo:en-
dosperm ratios (Table 1). Assessing independently the 
ploidy level of the mother plant to compare to the 
seed embryo, and careful documentation of histograms 
are essential for correct interpretation of such FCSS 

data. Genome contributions from unreduced sperm 
nuclei and endopolyploidy in endosperm can further 
complicate interpretations of FCSS histograms. A com-
bination of FCSS with progeny genotyping can provide 
more reliable information on mode of reproduction 
(Šarhanová et  al., 2024). Sporophytic apomixis still 
requires microscopic analyses of embryo development 
and/or molecular progeny tests, and in fact most ques-
tionable cases in Hojsgaard and Pullaiah (2023) belong 
to this developmental pathway.

Apomixis shows a clear tendency to species-rich 
families or subfamilies, and follows general biodiver-
sity trends across climatic zones, with most apomicts 
(in absolute numbers) occurring in the Tropics 
(Hojsgaard et  al., 2014a). Overall, no major changes 

Table 1. E xpected embryo and endosperm ploidy levels for sexual reproduction and most frequent developmental pathways of 
gametophytic apomixis in angiosperms, as detected by FCSS (Matzk et  al., 2000).

Egg
Sperm 

nucleus Embryo
Polar 
nuclei

Sperm 
nucleus Endosperm

Ratio 
endosperm/
embryo (PI) Mode of reproduction

Monosporic 
embryo sacs

Polygonum type  
(2 polar nuclei)

1 1 2 2 1* 3 1.5 sexual

1 0 1 2 0 2 2.0 haploid parthenogenesis**
Hieracium, Ixeris, 

Taraxacum, 
Antennaria,

2 0 2 4 0 4 2.0 autonomous apomictic

Setaria, Paspalum 
types

2 0 2 4 1 5 2.5 pseudogamous apomictic

(2 polar nuclei) 2 0 2 4 2* 6 3,0 pseudogamous apomictic
2 1 3 4 1 5 1.7 BIII hybrid**

Panicum, Eragrostis 
types

2 0 2 2 0 2 1.0 autonomous apomictic

(1 polar nucleus) 2 0 2 2 1 3 1.5 pseudogamous apomictic
2 0 2 2 2 4 2.0 pseudogamous apomictic
2 1 3 1 1 3 1.0 BIII hybrid**

Bisporic embryo 
sacs

Allium type 1 1 2 2 1* 3 1.5 sexual
(2 polar nuclei)
Ixeris type 2 0 2 4 0 4 2.0 autonomous apomictic
(2 polar nuclei) 2 1 3 4 1 5 1.7 BIII hybrid**
Tetrasporic 

embryo sacs
Drusa, Adoxa types
2 polar nuclei

1 1 2 2 1* 3 1.5 sexual

Gagea ova type
1 polar nucleus

1 1 2 1 1 2 1.0 sexual

Rudbeckia type 2 0 2 4 0 4 2.0 autonomous apomictic
(2 polar nuclei)
Fritillaria-type 1 1 2 4 1 5 2.5 sexual
(2 polar nuclei: 1n 

+ 3n)
Penaea type 1 1 2 4 1 5 2.5 sexual
(4 polar nuclei)*** 2 0 2 8 0 8 4.0 autonomous apomictic

2 0 2 8 1 9 4.5 pseudogamous apomictic
2 0 2 8 2 10 5.0 pseudogamous apomictic
2 1 3 8 1 9 3.0 BIII hybrid**

Here we present calculated values to show the rationale of FCSS, actual measures and peak indices usually vary a bit around the expected values. Note that 
values depend on the type of embryo sac development. Ploidy levels are in FCSS studies given as C or Cx values (DNA content). C values here are based 
on diploid mother plants (for polyploids, values have to be multiplied). *optimal 2:1 ratio of maternal: paternal genome contributions in the endosperm, 
pollen reduced; **examples of partial apomixis, characterized by different ploidy levels of embryo compared to mother plant; generally, these are very rare 
reproductive pathways. ***Sometimes more than 4 polar nuclei occurs and the interpretations of reproductive pathways are therefore different. PI = peak 
index (endosperm/embryo). Note that peak indices depend on developmental pathway. See text and Supplement 1 for discussion of critical FCSS reports.
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have been observed in the taxonomic distribution and 
phylogenetic position of apomictic taxa between both 
surveys. Angiosperm phylogeny group IV (Byng et  al., 
2016) recognized five small new orders, all without 
apomixis. On the level of orders, apomixis was newly 
recognized for Oxalidales with Cunoniaceae 
(Davidsonia; Eliott et  al., 2014) and Oxalidaceae 
(Oxalis; Doust et  al., 1981), and for Pandanales with 
Pandanaceae (Pandanus; Cox, 1990); after Hojsgaard 
and Pullaiah (2023). A further candidate appeared 
within the Commelinales in the family Huanguanaceae, 
in which apomixis is very likely according to popu-
lation genetic data (Niissalo et  al., 2020). On the level 
of families, Hojsgaard and Pullaiah (2023) added 
Gentianaceae (Schultesia; Ramirez and Brito, 1990) in 
Gentianales. Biebersteiniaceae may be added in the 
Sapindales, in which gametophytic apomixis was 
reported for Biebersteinia odora by using flow cyto-
metric seed screening (Brožová et  al., 2019); see 
Supplement 1 and Yamamoto et  al., 2014 why we 
regard this case as questionable. A further candidate 
for a new family would be Bromeliaceae (Poales), in 
which apomixis was inferred from bagging and emas-
culation experiments; however, the authors of this 
survey point at weaknesses of the methodical approach 
and the difficulties to discriminate pseudogamous 
apomixis from self-fertility (Cascante-Marín and 
Núñez-Hidalgo, 2023). Similar concerns hold for a 
record for Lamiaceae (Thymus, Orellana et  al., 2005; 
see Supplement 1). New reports of gametophytic apo-
mixis were presented for Montiaceae (Claytonia), 
Schoepfiaceae (Arjona), and Geraniaceae (Geranium) 
based on FCSS by Ptáček et  al., (2024), but remain 
doubtful without documentation of embryo sac devel-
opment, ploidy levels, and flow cytometric histograms 
(Supplement 1). The re-investigation of older records 
by Hojsgaard and Pullaiah (2023) led to doubt for 
apomixis occurrences in Adoxaceae, Caprifoliaceae, 
Caricaceae, Cyrillaceae, Dioscoreaceae, Lecythidaceae, 
Onagraceae, Paeoniaceae, and Sapindaceae. For new 
records on genus level see family treatments below, 
Hojsgaard and Pullaiah (2023), and Hörandl (2024). 
Apomictic reproduction has recently been suggested 
for two polyploid taxa of species-rich genus Senecio 
(Asteraceae) from Australia, based on unusual pattern 
of genetic variation (Ahrens and James, 2015), but 
later FCSS analyses revealed full sexuality of overrep-
resented multilocus genotypes, thus refuting apomixis 
in these species (Mráz et  al., 2024). Overall, the new 
findings confirm results by Hojsgaard et  al. (2014a) 
that apomixis occurs mostly in diverse families and 
genera. There is no apparent general geographical 
trend to a certain climatic zone, but new findings 

appear to be more likely in less investigated geograph-
ical areas, like the Himalayas (Brožová et  al., 2019) 
or the Neotropics (Souza-Pérez and Speroni, 2017). 
The update of apomixis occurrences at levels of orders 
and families do not show significant patterns of clus-
tering (Figure 1).

It remains an open question whether the clustering 
of apomixis in certain plant families (mainly 
Asteraceae, Poaceae, and Rosaceae) would be due to 
genetic or developmental predispositions (Van Dijk 
and Vijverberg, 2005). Somatic plant cells can be read-
ily re-programmed by transcription factors and epi-
genetic factors to become totipotent, as known e.g. 
from somatic embryogenesis (Su et  al., 2021). Under 
this aspect, shifts to apomixis appear feasible for all 
angiosperms. Carman (1997) postulated a correlation 
of apomixis to other developmental abnormalities - 
like polysporous embryo sacs, which could be a rem-
nant of ancient apomixis after a return to sexuality 
in certain lineages. This theory would see apomixis 
mostly as a transitional phase during polyploidization, 
with a return to sexuality. Reversals from asexuality 
to sexuality are in principle possible (Hörandl and 
Hojsgaard, 2012) and were also documented in phy-
logenies of animals (Domes et  al., 2007). However, 
for angiosperms it appears that many different evo-
lutionary pathways are possible to shift between 
modes of reproduction.

III.  Monocots

A.  Poaceae

The grass family represents a diverse group of species 
adapted to a wide range of geographic areas and cli-
matic regions whose species can be found on every 
continent (https://www.mobot.org/MOBOT/Research/
APweb/welcome.html#Famlarge). Apomixis in grasses 
was first recorded in species of Poa (Zollikofer, 1930; 
Müntzing, 1933) and Calamagrostis (Stenar, 1932).

Sporophytic or gametophytic apomixis is detected 
in more than 240 grass species and 56 genera, mak-
ing it the family with the greatest number of apomic-
tic genera (Hojsgaard and Pullaiah, 2023). Previous 
works listed about 250 species with apomixis belong-
ing to the Poaceae (Pullaiah and Febulaus, 2000). 
Despite the finding of new apomictic grasses during 
the last two decades, the difference with the most 
recent and the previous surveys is largely due to 
taxonomic changes in species classification (as men-
tioned above). Sporophytic apomixis in the form of 
nucellar embryony has been rarely observed in gen-
era such as Bothriochloa (Moskova, 1975), Cenchrus 

https://www.mobot.org/MOBOT/Research/APweb/welcome.html#Famlarge
https://www.mobot.org/MOBOT/Research/APweb/welcome.html#Famlarge
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(Shanthamma and Narayan, 1976), Eulaliopsis (Yao 
et  al., 2007) or Poa (Batygina, 1991). Gametophytic 
apomixis in the form of diplospory is common 
among species of genera such as Calamagrostis 
(Greene, 1984), Cenchrus (Dujardin and Hanna, 
1984), Eragrostis (Voigt and Bashaw, 1972) or 
Tripsacum (Farquharson, 1955), to mention a few. 
Gametophytic apomixis in the form of apospory is 
common among species of genera such as Bothriochloa 
(Brown and Emery, 1958), Brachiaria (do Valle and 

Glienke, 1991), and Paspalum spp. (Ortiz et  al., 
2013). In Poa, species with apomixis and/or diplo-
spory have been recorded (Nygren, 1950a, b). In 
Stipa, gametophytic apomixis has been inferred from 
FCSS (Brožová et  al., 2019). In most genera, apo-
mixis is well documented and has been confirmed 
through embryological and FCSS analyses. A detailed 
list of apomictic species and diversity of develop-
mental pathways for apomixis have been presented 
elsewhere (Hojsgaard and Pullaiah, 2023).

Figure 1.  Phylogeny of the families and orders of angiosperms. Tree topology and bootstrap percentages (only less than 100 
shown at branches) after Li et  al., (2021), published Open access under a Creative Commons Attribution 4.0 International License; 
orders added after Angiosperm Phylogeny group IV (Byng et al., 2016) and in the same color as the respective families. Occurrences 
of apomixis are indicated with black dots at the family/order name, questionable records with question marks; records after 
Hojsgaard and Pullaiah (2023) and the text here (see also Supplement 1).
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Thus, apomixis has arisen in the two major clades 
within the family, the PACMAD clade and the BOP 
clade. Examples to the PACMAD clade belong 
Eragrostis or Chloris from the subfamily Chloridoideae; 
Cortaderia and Danthonia belong to the subfamily 
Danthonioideae; and Bothriochloa, Brachiaria, 
Cenchrus, and Paspalum belong to subfamily 
Panicoideae. To the BOP clade belong Calamagrostis 
and Poa from the subfamily Pooideae. The more basal 
lineages within the family, i.e. the subfamilies 
Anomochlooideae, Pharoideae, and Puelioideae con-
tain few species (Soreng et  al., 2017) and apomixis 
has not been recorded (Hojsgaard and Pullaiah, 2023).

Detailed biogeographic studies in grass genera con-
taining apomictic species are not rare (see e.g., Arthan 
et  al., 2022; Gallaher et  al., 2022), but in most cases, 
they are not focused on apomictic species as this 
requires additional information on ploidy or genome 
sizes and reproductive biology. Despite such informa-
tion being useful, it requires often neglected cytolog-
ical skills and knowledge. For instance, a recent study 
on the phylogeny and biogeography of Calamagrostis 
(Peterson et  al., 2022) included 9 out of 10 apomictic 
species listed by Hojsgaard and Pullaiah (2023) but 
without referencing ploidy or reproductive mode. The 
phylogenetic schemes inferred from Bayesian analyses 
of ITS and plastid data from species representing 
multiple origins and uncertain phylogenetic positions 
(Peterson et  al., 2022) included eight of those puta-
tively apomictic species. Polyploidy and apomixis are 
known to generate conflicting topologies due to 
incongruent signals between markers or confounding 
sequences (multiple alignments) (see below).

Another reason to avoid including ploidy and repro-
ductive mode data in phylogenetic analysis of apomic-
tic grasses is likely connected to the challenges imposed 
by rather low morphological variability and the occur-
rence of polyploidy, hybridization, and apomixis that 
hamper proper taxonomic analyses. In this sense, the 
species concept used by taxonomists to delimitate 
apomictic grass species has followed the most opera-
tional concept in practice, i.e. the use a priori of a 
traditional phenetic concept combined to alternative 
molecular markers in attempts to provide a theoretical 
background for a posteriori species delimitation. The 
recognition of apomictic species or lineages and their 
relationships cannot be defined by phenetic traits alone 
and additional criteria of species are required (Hörandl, 
2022). For some years now, “integrative taxonomy” or 
the use of multiple perspectives like phylogeography, 
comparative morphology, population genetics, ecology, 
cytology, development, etc. has been proposed to 
delimit the units of life’s diversity (Dayrat, 2005). Yet, 

systematic and taxonomic studies that integrate infor-
mation from different fields have rarely been used in 
apomictic grasses.

Chromosomal change plays a central role in the 
evolution of the family. An ancestral karyotype with 
a minimal size of 33.6 Mb structured in five proto-
chromosomes was suggested for the family based on 
gene order and content (Salse et  al., 2009). The major 
evolutionary shuffling events of whole-genome dou-
bling (WGD) and diploidization, followed by 
lineage-specific rearrangements, explain the extant 
diversity of chromosome numbers and genome diver-
gence (Bolot et  al., 2009). In addition, synteny break-
points and junction sequences had provided evidence 
of the molecular mechanisms driving chromosome 
shuffling events. Today’s chromosomal variation/reduc-
tion from the n = 12 common paleo-ancestor to grass 
subfamilies with and without apomixis (e.g. Pooideae 
and Ehrhartoideae of the BEP clade, and Panicoideae 
of the PACMAD clade) was driven by nonrandom 
centromeric/telomeric illegitimate recombination 
between nonhomologous chromosomes causing nested 
chromosome fusions and synteny break points (Murat 
et  al., 2010). Such structural but also functional (i.e. 
neo- or subfunctionalization) changes following WGD 
provided polyploids with competitive advantages such 
as increased vigor, wider environmental tolerance, 
self-fertilization, and formation of apomictic species, 
all promoting the ability to establish new lineages and 
adapt to conditions not tolerated by their diploid 
ancestors (Murat et  al., 2010; Hojsgaard, 2018). The 
absolute contribution of each of these traits, including 
apomixis, to macroevolutionary processes has yet to 
be revealed.

Previous analyses have shown an association 
between the presence of apomixis and higher numbers 
of species and genera among the subfamilies of 
Poaceae, Asteraceae, and Orchidaceae (Hojsgaard 
et  al., 2014a). In large, diverse, and genomically com-
plex genera, (allo- and auto-) polyploidy, hybridiza-
tion, and apomixis are key players of diversification 
and geographic distributions. Within the Poaceae, 
Paspalum is perhaps the genus with most studies 
involving apomixis and might therefore serve as a 
case study about undergoing natural processes and 
methodical issues in the taxonomic and phylogenetic 
analyses among apomictic grasses.

1.  Paspalum
In Paspalum, a genus of 10.6 My old, (Burke et al., 2018) 
with ca. 350 species, many of them apomictic, phy-
logenetic relationships among species are partially 
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recovered due to reticulation events, frequent auto-
polyploidization (but also allopolyploidization) and 
apomixis, obscuring infrageneric classification 
(Scataglini et  al., 2014). Paspalum species are mainly 
American and ecologically diverse. Apomictic species 
are not restricted to a specific ecoregion and can be 
found in a variety of environments from the Atlantic 
to the Pacific (Zuloaga and Morrone, 2005), from 
seashore species that specialize on saline habitats 
(halophytes) like P. vaginatum and P. distichum (Goad 
et  al., 2021) to macrophytes like P. modestum and P. 
repens (Karunarathne et  al., 2020a) or mountain spe-
cies like P. remotum and P. volcanense (Glücksberg 
et  al., 2019).

Sexual species are allogamous, with a few excep-
tions, and develop Polygonum-type embryo sacs (Ortiz 
et  al., 2013). Apomixis is expressed as apospory in 
most species, rarely diplospory, through the develop-
ment of 4-nucleate Paspalum-type or 8-nucleate 
Hieracium-type and Taraxacum-type embryo sacs 
(Hojsgaard and Pullaiah, 2023). As most apomicts 
from different grass genera, Paspalum apomicts are 
polyploid, self-fertile and pseudogamous. Seed set 
among apomicts is often lower than in sexuals (e.g. 
Hojsgaard et  al., 2016) but self-fertility and pseudog-
amy provide apomicts the ability of uniparental repro-
duction (Reutemann et  al., 2022).

In model species such as P. notatum and the 
Anachyris group (P. simplex, P. malacophyllum and P. 
procurrens), the locus or loci controlling apomixis are 
in low-recombination or nonrecombining regions, 
which prevents precise identification of associated 
genes. This region spans at least 6 cM and several 
megabases (Pupilli et  al., 2004; Hojsgaard et  al., 2011). 
Similar findings in apomictic grasses belonging to 
other like Urochloa or Pennisetum (Akiyama et  al., 
2004; Worthington et  al., 2016) indicate this might 
be a common feature in the origin of apomixis among 
species of the tribe Paniceae in the subfamily 
Panicoideae. Developmental steps in apomictic ovules 
are asynchronous and exhibit a general gene 
de-regulation compared to sexual ones (Hojsgaard 
et  al., 2013; Ortiz et  al., 2020). Genetic mapping, 
cloning, and gene expression analyses have identified 
genes with diverse functions during apomixis 
(Hojsgaard, 2020; Ortiz et al., 2020), but none of them 
is specific for the avoidance of meiosis or partheno-
genesis. Apomixis is in Paspalum highly facultative, 
particularly at early developmental stages, and influ-
enced by environmental conditions (Quarin, 1986; 
Karunarathne et  al., 2020b).

Autopolyploidy has a major role in the evolution 
of apomictic complexes in the genus, while 

hybridization and allopolyploidy have produced a few 
lineages. Most species have sexual self-sterile diploids 
and apomictic self-fertile tetraploids, but other ploidy 
combinations also occur as well as species with one 
ploidy level (Ortiz et  al., 2013). In diploids, the spon-
taneous formation of unreduced embryo sacs at very 
low frequencies (e.g. Norrmann et  al., 1989; Hojsgaard 
et  al., 2008) is a regular mechanism and is key for 
polyploidization. Polyploids in these complexes have 
arisen multiple times from different populations 
throughout the main genetic clusters of diploids, and 
because of apomixis, polyploids have less genetic 
structure, meaning a smaller amount and more frag-
mented distribution of genetic variation within and 
between populations (Karunarathne and Hojsgaard, 
2021). Such polyploidization dynamics have contrib-
uted to widen their geographic distributions. At least 
in some species, geographic displacement between 
cytotypes in contact zones promoted their ecological 
differentiation (Karunarathne et  al., 2018) and shaped 
the observed patterns of cytotype distribution in these 
agamic complexes, often exhibiting geographical par-
thenogenesis (Quarin and Lombardo, 1986; Urbani 
et  al., 2002; Karunarathne et  al., 2018). Because of 
the recurrent origins and autopolyploidy, many agamic 
cytotypes are included into one species together with 
sexuals and show low or no intraspecific morpholog-
ical variation (e.g. Karunarathne and Hojsgaard, 2021). 
Classification of species is thus only challenged by 
high phenotypic plasticity and overlap in species mor-
phologies, which happen in a few cases, like in P. 
malacophyllum or P. almum (Chase, 1933). In the 
latter, a diploid cytotype described as a different spe-
cies, P. hexastachyum, was later synonymized to tet-
raploid P. almum based on cytotaxonomic and 
embryological analyses, and resynthesis of polyploids 
by colchicine (Quarin, 1974; Quarin and Hanna, 
1980). Morphological and ecological similarities 
among species have driven taxonomists to create 
infrageneric informal groups (Chase, 1929), and anal-
yses show that these are phylogenetically unsupported, 
artificial groups of polyphyletic origins (see e.g. 
Denham et  al., 2010; Delfini et  al., 2023). In species 
from a few informal groups like Plicatula, Stellata or 
Dilatata, hybridization plays an active role creating a 
reticulate pattern in which morphological or genetic 
delimitation of taxa is not possible and are therefore, 
taxonomically challenging (see e.g. Oliveira, 2004; 
Bonasora et  al., 2015).

So far, phylogenetic studies in the genus have par-
tially resolved species relationships while species 
delimitation in some clades remains unclear (Giussani 
et  al., 2009; Rua et  al., 2010; Scataglini et  al., 2014). 
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Next-generation sequencing (NGS) methods, specifi-
cally reduced representation methods like RAD-Seq 
(Restriction site-associated DNA sequencing), have 
become popular to visualize tree topologies on shallow 
phylogenetic levels (see e.g., Hörandl, 2022). In 
Paspalum and among grass species from other apomic-
tic genera like Urochloa or Eragrostis, NGS methods 
have so far not been used for phylogenetic purposes, 
but to reveal genome (structures and) evolution in 
species of agronomic interest (e.g. Tomaszewska 
et  al., 2023).

New attempts to resolve species relationships in 
Paspalum and grass genera with polyploidy, hybrid-
ization, and apomixis might greatly benefit from inte-
grative approaches collecting data not only from 
morphology or anatomy (quantitative/qualitative traits) 
and genetics (markers, sequences), but also from 
cytology (basic chromosome numbers, ploidy, molec-
ular cytogenetics), embryology (types of sexual or 
apomictic development), reproductive biology (polli-
nation syndrome, phenology), and ecology (ecological 
niche, distribution).

IV.  Dicots

A.  Ranunculaceae

The Ranunculaceae are the only family in Ranunculales 
exhibiting apomixis, with records for the following 
three genera: Thalictrum (Overton, 1902; Daskalova, 
2004), Ranunculus (Häfliger, 1943; Nogler, 1984b; 
1995; Hojsgaard et al., 2014b) and Halerpestes (Brožová 
et  al., 2019). For the dioecious species Thalictrum 
purpurascens, the developmental pathway is not com-
pletely clear (Overton, 1902), whereas for T. aquilegii-
folium nucellar embryony has been documented 
(Daskalova, 2004). Gametophytic apomixis is best 
documented in various species of Ranunculus (see 
below). Old records of suspected apomixis in Ficaria 
(Metcalfe, 1939) remain unsupported so far (Popelka 
et  al., 2019). Records of autonomous apomixis for 
Caltha based on FCSS only (Ptáček et  al., 2024) need 
confirmation because apomictic Ranunculaceae usually 
reproduce via pseudogamy (based on 8-nucleate 
embryo sacs with 2 polar nuclei, Johri et  al., 1992; 
see below under Ranunculus).

The pattern confirms the emergence of both forms 
of apomixis (sporophytic and gametophytic) in dis-
tantly related major clades of the family: Thalictrum 
belongs to subfam. Thalictroideae, Ranunculus and 
Halerpestes belong to Ranunculoideae (Cossard et  al., 
2016). In the phylogeny of Ranunculus and related 
genera (tribe Ranunculeae), apomixis emerges four 

times in different clades, suggesting a convergent and 
derived evolution of the trait. It is unclear whether 
any predispositions for apomixis can be assumed in 
tribe Ranunculeae. From a genomic and chromosomal 
perspective, it may be noteworthy that all the apomic-
tic taxa have the same ancestral karyotype of four 
metacentric and four submetacentric/subtelocentric 
chromosomes. This so-called “Bauer” karyotype occurs 
in most species of the basal clades (Baltisberger and 
Hörandl, 2016), whereas the more derived clades of 
Ranunculus (subgenus Ranunculus) exhibit a higher 
variation of karyotypes and chromosome types. 
Eventually, uniform karyotypes in the basal part of 
the phylogeny facilitated the frequently observed inter-
specific hybridization as a potential trigger for apo-
mixis (Baltisberger and Hörandl, 2016). Ecologically, 
Halerpestes lancifolia, R. parnassifolius, and R. kuepferi 
are alpine species, whereas the R. auricomus complex 
occurs more in lowlands and reaches just subalpine 
vegetational zones; the latitudinal spectrum ranges 
from the Mediterranean to the Arctic. A clear cor-
relation of apomixis to cold climates was just shown 
for R. kuepferi in the European Alps (Schinkel et  al., 
2016), but not for the widespread R. auricomus com-
plex (Karbstein et  al., 2021).

1.  Ranunculus
The genus Ranunculus comprises c. 600 sexual species 
and has a worldwide distribution (Emadzade et al., 
2011). Specifically, the Eurasian R. auricomus complex 
is regarded as a model system for development and 
evolution of apomixis. Sexual Ranunculus has 
Polygonum-type embryo sacs as typical for 
Ranunculaceae, and apomixis is expressed as apospory, 
with aposporous initials appearing at the end of 
megasporogenesis (during the tetrad stage) and replac-
ing the aborting megaspore. Further development of 
the aposporous initials results in an 8-nucleate embryo 
Hieracium-type embryo sac, with parthenogenetic 
development of unreduced egg cells into an embryo 
(Nogler, 1984a; 1984b). Usually, pollen is needed to 
fertilize the polar nuclei (pseudogamy) for proper 
development of the endosperm and fertile seed for-
mation (e.g. Hojsgaard et  al., 2014b; Klatt et  al., 2016; 
Schinkel et  al., 2016). Pollen fertility is reduced, but 
still functional pollen is left for pseudogamy, whereby 
self-pollen is also functional in the apomictic plants 
(Hörandl, 2008) and provides apomicts the ability of 
uniparental reproduction. Nogler (1984a; 1995) estab-
lished that apospory is under genetic control and 
inherited by a single, apospory-controlling Mendelian 
factor. However, it has been shown that emergence 
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and inheritance of apospory is also possible in dip-
loids (Barke et  al., 2018). Four candidate genes for 
apospory were found via transcriptome sequencing 
and analysis of loci under selection in aposporous 
hybrids (Paetzold et  al., 2022), but the genetic basis 
of parthenogenesis is still unclear. Apomixis in 
Ranunculus is highly facultative and proportions of 
apospory are to some extent influenced by environ-
mental conditions (Klatt et  al., 2016; Syngelaki et  al., 
2020a; 2020b; Ulum et  al., 2020), suggesting a strong 
epigenetic component in the “control landscape”.

Evolution of apomictic complexes follows largely 
the classical scheme of Babcock and Stebbins (1938). 
Four diploid sexual and one tetraploid sexual pro-
genitor species are known; these diversified from c. 
700,000 years ago onwards via allopatric speciation 
and have restricted, disjunct current distributions 
(Tomasello et  al., 2020). Hybridization between these 
progenitors during range fluctuations has resulted 
in a huge amount of apomictic, tetraploid to hexa-
ploid lineages with slightly different morpho- and 
ecotypes (Karbstein et  al., 2022; Figure 2). 
Hybridization of sexual species as a trigger for the 

shift to apospory has been also documented exper-
imentally (Hojsgaard et  al., 2014b; Barke et  al., 
2018), whereby to some extent meiosis disturbances 
(Barke et  al., 2020), but also combinations of muta-
tions in important developmental genes (Paetzold 
et  al., 2022) could be functional backgrounds. These 
mutations might be already present in sexual species 
as very rare apomictic seed formation has been 
observed (Karbstein et  al., 2021). In Central Europe 
facultative apomixis is still predominant, while obli-
gate apomictic lineages have colonized Northern and 
Southern Europe (Karbstein et  al., 2021; Bradican 
et  al., 2023). The gene pools of the progenitor spe-
cies shape the three main genetic clusters within the 
complex that show altogether an East-West differ-
entiation in Europe. This East-West pattern extends 
to Siberia and the Beringian region, whereby an 
unknown progenitor in Central Asia could have been 
involved (Bradican et  al., 2024). However, the 
well-documented hybrid origin, the lack of morpho-
logical distinctness between lineages, and the local 
distributions favored a classification of previously 
described agamospecies as nothotaxa (hybrids) 

Figure 2.  Hybrid scheme of sexual progenitors and selected apomictic allopolyploid Ranunculus auricomus derivates (H1–H10), 
inferred from RAD-Seq data and PhyloNet analyses of 48 phased nuclear genes (Karbstein et  al., 2022). The diploid sexual progen-
itor species Ranunculus cassubicifolius (subgenome C), R. flabellifolius (subgenome F), R. notabilis (subgenome N), R. envalirensis 
(subgenome E), and a hypothetical unknown taxon (U) in different combinations gave rise to apomictic polyploid derivates. 
Differently dashed lines to the left and right specify parental subgenome contributions of allopolyploids. Subgenome dominance 
is shown by the relative position of the polyploid to the progenitors. Apomictic hybrids classified as nothotaxa. Reprinted from 
Karbstein et  al. (2022) (copyright with the authors).
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(Karbstein et  al., 2022; Melzheimer and Hörandl, 
2022; Hodač et  al., 2023; Bradican et  al., 2023; 2024).

In the model system R. kuepferi, gametophytic apo-
mixis occurs rarely in the diploid, otherwise sexual 
cytotype, but is predominant as facultative apomixis 
in the polyploid, mostly tetraploid cytotypes (Cosendai 
and Hörandl, 2010; Schinkel et  al., 2016; Klatt et  al., 
2018). The tetraploids had multiple autopolyploid ori-
gins (Cosendai et  al., 2011) and emerged within the 
last 10,000-80,000 years (Kirchheimer et  al., 2018), 
which is in evolutionary time frames too short for 
substantial genetic diversification (Cosendai et  al., 
2011). The diploids occur only in the southwestern, 
previously unglaciated parts of the Alps, whereas the 
tetraploids occur in the whole, previously glaciated 
and higher parts of the Alps, thus providing a classical 
example of geographical parthenogenesis (Cosendai 
et  al., 2013). Triploids appear in the contact zone of 
diploids and tetraploids. According to FCSS results, 
these triploids are mostly the result of ongoing poly-
ploidization events via a female triploid bridge 
(Schinkel et  al., 2017). Experimental work suggests 
that unreduced female embryo sac formation might 
be triggered by freezing temperatures (Klatt et  al., 
2018). After fertilization of unreduced egg cells, the 
resulting triploids can become tetraploids via a 
so-called triploid bridge. The apomictic tetraploids 
show a better cold acclimation to higher altitudes and 
cold conditions, both phenotypically and epigenetically 
and in gene expression (Klatt et  al., 2018; Syngelaki 
et  al., 2020a; 2020b; 2021). During postglacial 
re-colonization of the Alps, this fostered rapid spread 
of the tetraploid apomictic cytotype in a novel, colder 
ecological niche (Kirchheimer et  al., 2018).

Morphologically, the diploids do not differ from 
tetraploids except for some traits related to apomixis 
in the latter (reduced, incomplete corollas and low 
pollen quality). Based on these few features Huber 
(1988) classified the tetraploids as R. kuepferi subsp. 
orientalis whereas the diploids represent subsp. kuep-
feri. Detailed morphometric analysis of natural pop-
ulations showed slightly better growth and more 
flowers in diploids, but these features are variable 
under different temperature conditions (Schinkel 
et  al., 2016; Syngelaki et  al., 2020a) and hence not 
useful for taxonomic considerations. Therefore, a clas-
sification of apomicts on species level is not justified.

Embryological investigation confirmed apospory in 
R. parnassifolius subsp. heterocarpus (Vuille and 
Küpfer, 1985), which might represent a similar case 
of an autopolyploid cytotype (Cires et  al., 2010; 2012), 
but mode of reproduction has not been thoroughly 
studied. In contrast, other high alpine buttercup 

species like R. pygmaeus, R. alpestris, and R. glacialis 
are obligate sexual (Hörandl et al., 2011). Gametophytic 
apomixis with pseudogamy has been detected via 
FCSS in the Himalayan taxon R. membranaceus 
(Brožová et  al., 2019). Other Himalayan species in 
this clade are good candidates for apomixis, as the 
Himalayan clade represents a young radiation with 
polyploids, reticulate evolution and unclear species 
delimitation (Emadzade et  al., 2015). Polyploidy is 
prevalent in Himalayan Ranunculus species, and pollen 
meiosis behavior is often abnormal, with frequent 
cytomixis (i.e. the migration of nuclei from one plant 
cell to another through intercellular channels) (Jeelani 
et  al., 2014). A record of autonomous apomixis in R. 
peduncularis from South America based on FCSS only 
(Ptáček et  al., 2024) requires confirmation, because 
pseudogamy is prevalent in all other Ranunculus spe-
cies. Further investigations in high mountain systems 
of the world are promising to detect more apomictic 
buttercup species.

B.  Plumbaginaceae

The Plumbaginaceae (noncore Caryophyllales) family, 
with nearly 940 species (Caperta et  al., 2020), com-
prise two subfamilies, the Plumbaginoideae and 
Limonioideae (= Staticoideae) (Hernández-Ledesma 
et  al., 2015; Kubitzki, 1993; Malekmohammadi et  al., 
2017). The genus Limonium (sea lavenders) included 
in Limonioideae, encompasses several taxonomic com-
plexes and ca. 600 species (Malekmohammadi et  al., 
2017; Hassler, 2018; Koutroumpa et  al., 2018), and is 
well known for apomixis (Baker, 1966; Erben, 1978; 
1993; Ingrouille and Stace, 1985; 1986; Lledó et  al., 
2005; Caperta et  al., 2018). The main center of species 
diversity is the Mediterranean basin, where it has been 
assumed that apomicts account for a large proportion 
of the species (Erben, 1978; 1993; Cowan et  al., 1998; 
Brullo and Erben, 2016). This genus is considered 
taxonomically complicated (Baker, 1966; Erben, 1978; 
1993; Ingrouille and Stace, 1985; Lledó et  al., 2005; 
Cortinhas et  al., 2015; Malekmohammadi et  al., 2017; 
Caperta et  al., 2018; Koutroumpa et  al., 2018; Róis 
et  al., 2018; Pina-Martins et  al., 2023a; 2023b),  
generally accounted for a combination of several phe-
nomena: (i) a polymorphic sexual system associated 
with flower polymorphism, (ii) hybridity, (iii) poly-
ploidy, and (iv) apomixis.

1.  Limonium
The polymorphic sexual system.  In Limonium, as well 
as other Plumbaginaceae members, plants show a 
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polymorphic sexual system associated with striking 
flower polymorphisms and linked to a sporophytic 
self-incompatibility system (SI). Heterostyly 
(populations with a reciprocal arrangement of styles 
and anther heights, i.e. reciprocal herkogamy) is 
typical in members of Plumbaginoideae and rare in 
Limonioideae (e.g. L. vulgare, Baker, 1948; Cortinhas 
et  al., 2015) whereas pollen/stigma polymorphism is 
widespread in the genus (Costa et  al., 2019).

The species present heteromorphic flowers and 
show ancillary pollen (differences in pollen size, 
shape, and exine sculpturing) and stigmas (linear with 
papillae with distinct sizes and morphology) (Baker, 
1948; 1966; Nowicke and Skvarla, 1976) that prevent 
self- and intramorph mating (Baker, 1948; 1966; 
Dulberger, 1975a; 1975b; Róis et  al., 2016; Conceição 
et  al., 2021). Dimorphic species have different 
pollen-stigma combinations: A- coarsely reticulate 
sexine - cob type stigma (A/Cob); B - finely reticulate 
sexine - papillate type stigma (B/Pap); C - finely retic-
ulate sexine - cob type stigma (B/Cob); and D - 
coarsely reticulate sexine - papillate type stigma (A/
Pap). A and B represent self-sterile combinations 
whereas C and D are self-fertile (Baker, 1966; 
Dulberger, 1975a; 1975b). Species with self-sterile 
combinations reproduce through outcrossing or apo-
mixis (Baker, 1966; Erben, 1978).

Sexual species have anthers with pollen with high 
viability, but apomicts show empty anthers or few 
pollen grains that may present diverse morphology 
and sizes (Erben, 1978; 1979; Róis et  al., 2012; 
Conceição et  al., 2021). Sexual diploid L. ovalifolium 
(2n) produces reduced pollen with high viability (Róis 
et  al., 2016) but triploid L. algarvense (3n) (Conceição 
et  al., 2019) have pollen with low viability like tetra-
ploid apomicts of L. binervosum complex (Róis et  al., 
2016). However, SI monomorphic apomicts can show 
viable pollen grains that poorly adhere to stigmas 
(Dulberger, 1975a; 1975b; Costa et  al., 2019). 
Male-sterile species, which reproduce by apomixis, 
present pollen grains with a collapsed morphology 
but have regular stigmas (Róis et  al., 2012; 2016).

Here we compiled diverse species regarding ploidy, 
flower morphs, and apomixis type described in the 
literature (Supplement 2). Most species are triploid 
(n = 46), followed by tetraploid (n = 17), diploid 
(n = 12), pentaploid (n = 4), and hexaploid (n = 3) and 
some species (n = 8) have more than one ploidy level. 
From these, 16 self-incompatible (eight A/Cob and 
eight B/Pap) (e.g. L. ovalifolium), five self-compatible 
monomorphic species (four B/Cob and one A/Pap) 
and four self-compatible diploid species (three B/Cob 
and one A/Pap) were reported. Among triploids, one 

male sterile with cob stigma, out of 29 self-incompatible 
species (12 A/Cob and 17 B/Pap) was reported. In 
tetraploids, fourteen self-incompatible (11 A/Cob and 
three B/Pap), four self-compatible (one B/Cob and 
one A/Pap), and five male-sterile with cob stigma and 
one male sterile with pap stigma were described. Only 
five self-incompatible pentaploids (two A/Cob and 
three B/Pap), and two A/Cob self-incompatible (e.g. 
L. cythereum) and one A/Pap self-compatible (L. 
humile) hexaploids were recognized. Most diploids 
reported so far are dimorphic, with only two reports 
of monomorphic species (L. cossonianum, L. califor-
nicum) (Supplement 2). Strikingly, most triploids are 
monomorphic (n = 26) as are some tetraploids (n = 15); 
however, dimorphic triploids (L. coincyi), tetraploids 
(L. narbonense), pentaploids (L. roridum) and hexa-
ploids (L. graecum) were also found (Supplement 2).

Ongoing hybridization.  The main limitation in the 
study of hybrid speciation in Limonium is the lack, 
among extant populations, of putative parents – or 
entities that could be considered as parents of the 
extant taxa. Recent interspecific hybrids have been 
reported (Erben, 1978; 1993) but there are extremely 
few instances that have adequate documentation. In 
15-20 species of ornamental interest, interspecific 
crosses gave rise to a number of partially fertile 
hybrids, with fertility restored through somatic 
chromosome doubling (Morgan and Funnell, 2018).

Efforts have been made to gain insight on hybrid-
ization in the genus. Crosses between diploid species 
from the L. ovalifolium complex produced both fertile 
and infertile hybrids, showing maternal and paternal 
pollen-stigma combinations and inflorescence types 
or intermediate inflorescence morphotypes (Conceição 
et  al., 2021). Thus, reproductive barriers between the 
diploid species seem to be weak or nonexistent. In 
contrast, crosses between tetraploids and diploids from 
distinct species complexes failed to produce true 
hybrids and progeny arose via apomixis, with high 
levels of developmental anomalies in seedlings like 
pleiocotyly (more than two cotyledons per seed) and 
polyembryony (more than one embryo per seed) 
(Conceição et  al., 2018; 2021). Remarkably, despite 
the lack of hybrids, bidirectional pollen transport by 
insect visitors was observed between sexual and 
apomictic plants, meaning that intercytotype mating 
and gene flow can occur (Conceição et  al. 2021).

Apomixis. Limonium has a high incidence of polyploidy 
(Erben, 1978; 1979; Castro and Rosselló, 2007; Caperta 
et  al., 2018; Marques et  al., 2018). Diploid species 
(2n = 16 or 2n = 18) seem to be cytologically stable, 
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with typically two basic chromosome numbers, x = 8 
and x = 9 (Erben, 1978) and sexual reproduction 
(Supplement 2). Apomixis is usually inferred by a 
combination of the occurrence of odd ploidy, 
aneuploidy, and monomorphic plants with self-
incompatible combinations that produce seeds (Erben, 
1978; Ingrouille and Stace, 1985; 1986; Cowan et  al., 
1998). Thus, all inferred apomicts in the literature are 
polyploid, and sexual species may present a low 
expressivity of apomixis (e.g. L. ovalifolium, Róis 
et  al., 2016).

Although in Limonium there are very few polyploid 
taxa for which at least one parent has been hypoth-
esized or recognized with high likelihood (Erben, 
1978), the evolutionary history of most taxa is 
unknown. Based on morphology, karyotype differences 
and embryology, Erben (1978; 1993) proposed paren-
tal species for several polyploid hybrids, and suggested 
that polyploid taxa originated from parents with dif-
ferent combinations of the basic chromosome numbers 
x = 8 and x = 9, but this hypothesis is not yet proven. 
Triploids are by far the predominant cytotype among 
Limonium spp. in the Iberian Peninsula and the 
Balearic Islands (Erben, 1978; 1979; Cowan et  al., 
1998; Castro and Rosselló, 2007), like the allotriploid 
apomict L. dufourii (Palop-Esteban et  al., 2007). 
Polyploids from the L. vulgare complex show diverse 
breeding systems, such as the sexual autopolyploid L. 
narbonense (Palop-Esteban et al., 2011), and the sexual 
hexaploid L. humile (Dawson and Ingrouille, 1995) 
and the putative apomict L. maritimum (Cortinhas 
et  al., 2015) occurring in a wide spectrum of envi-
ronmental conditions and in sympatry with related 
species (Pina-Martins et  al., 2023).

Other studies hypothesizing the parental origin of 
polyploid species in Limonium are only based on 
unreliable morphological characters. For example, L. 
algarvense is considered a homogeneously triploid 
taxon (2n = 3x = 25) that originated from crosses 
between diploid sexual L. ovalifolium and tetraploid 
apomict L. binervosum (Ingrouille, 1985). Nonetheless, 
these two species do not occur in sympatry as tetra-
ploid apomicts are distributed at higher latitudes 
(37–55°N) than diploid sexuals (34–48°N), and trip-
loid L. algarvense thrives in the southern boundaries 
of diploids (35–39°N) (Caperta et al., 2017). Ecological 
differentiation was also found between the L. ovali-
folium and L. binervosum complexes and L. algarvense, 
namely in the frequency of occurrences on the most 
common lithological groups (Caperta et  al., 2017). 
While L. algarvense occurs more frequently on alluvial 
sediments in deltas, the L. ovalifolium complex shows 
preferences on limestone rocks, and the L. binervosum 

complex occurs on alluvial deposits, limestones and 
till sites (Caperta et  al., 2017). These species show 
variations in genome size, chromosome numbers, and 
meiotic behavior (Caperta et  al., 2017; Conceição 
et  al., 2019). Interestingly, inter- and intraspecific 
crosses between diploids with similar karyotypes 
(2n = 16) resulted in the formation of diploids, triploid 
and tetraploid hybrids (Conceição et  al., 2018), indi-
cating that diploids produce reduced and unreduced 
gametes.

In Plumbaginaceae, embryo sac development fol-
lows a tetrasporic pattern (Boyes and Battaglia, 1951). 
The few examples with embryological analysis in 
Limonium revealed that sexual diploids form reduced 
embryo sacs of the Gagea- type (see Maheshwari, 
1937), or Adoxa- and Drusa-types (Hjelmqvist and 
Grazi, 1964; Róis et al., 2016) (Supplementary Table 2). 
Triploids show diplospory of Ixeris - and Eryngium 
-types (L. virgatum, D’Amato, 1940; 1949). In facul-
tative apomicts (diploid L. ovalifolium) and male-sterile 
species (L. multiflorum), Rudbeckia-type diplospory 
was observed (Róis et  al., 2016). Autonomous endo-
sperm formation has been observed in all apomicts 
for which cytoembryological studies were performed 
(D’Amato, 1940; 1949; Hjelmqvist and Grazi, 1964; 
Róis et  al., 2016). Abiotic stress at high and low tem-
peratures can induce changes in apomixis expression 
in tetraploid L. transwallianum (Hjelmqvist and Grazi, 
1964). A Limonium ovule transcriptomic study 
revealed major pathways potentially associated with 
apomixis like protein degradation, transcription, stress 
response, hormonal signaling, signal transduction, and 
epigenetic regulation (Caperta et  al., 2023).

In conclusion, over the last years efforts have been 
made to uncover new information on hybridization, 
polyploidy and apomixis in Limonium. However, there 
are several issues which remain to be addressed like 
the determination and frequency of allo- vs. autopoly-
ploid origins of extant apomictic genotypes, or com-
petitive and reproductive interactions between species.

C.  Rosaceae

Rosaceae is one of the trio of families cited for the 
great frequency with which genera exhibit gameto-
phytic apomixis (Asker and Jerling, 1992). Within the 
Rosales, Rosaceae are basal to the other eight families 
in the order, three of which also show some form of 
apomixis, albeit at much lower frequencies (Hojsgaard 
et  al., 2014a). The family is now recognized (Potter 
et  al., 2007; Stevens, 2001 onwards) as comprising 
three subfamilies and 15 tribes, eight of which include 
genera now well known for the taxonomic complexity 
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following from the combination of gametophytic apo-
mixis, hybridization, and polyploidy. One of these 
subfamilies, Amygdaloideae, is a diverse group includ-
ing not only many genera with dry, dehiscent fruits 
but also quite a few with fleshy fruits. Among these, 
tribe Maleae stands out because it appears to have 
arisen through a whole-genome duplication possibly 
associated with hybridization, at least 50 million years 
ago (Evans and Campbell, 2002; Velasco et  al., 2010; 
Hodel et  al., 2021). Within this tribe, most genera 
are fleshy-fruited (subtribe Malinae; fleshy fruits 
developing from hypanthial (inferior) ovaries) and 
many of these comprise apomictic polyploids as well 
as diploids. One genus, Crataegus L. (hawthorn), will 
be used to exemplify current areas of research related 
to apomixis, and the issues that they address.

1.  Crataegus
Hawthorns, together with apples (Malus), cotoneasters 
(Cotoneaster), mountain ashes (Sorbus sensu lato), and 
serviceberries (Amelanchier), are large genera in sub-
tribe Malinae. Gametophytic apomixis, polyploidy, and 
hybridization all appear to have contributed to their 
large numbers of species and taxonomic complexity 
(Dickinson et  al., 2007). Hawthorns differ from these 
genera, and from most other Malinae, in producing 
drupes rather than berries. Crataegus is estimated to 
comprise over 200 species native to North America, 
Eurasia, and North Africa (Phipps, 2015). These spe-
cies are sufficiently diverse morphologically that there 
has been a well-developed infrageneric classification 
of the genus to sections or series or both since the 
first half of the 19th century (summarized by Phipps, 
1983a; Phipps, 1983b). Hybridization was controver-
sial, and some early 20th century North American 
workers pointed to the uniformity of batches of seed-
lings as proof that their parent tree could not be a 
hybrid (Dickinson, 1999), notwithstanding work in 
Europe documenting morphologically intermediate 
hawthorns and their putative parent species (Raunkiær, 
1925). Polyploidy was documented in Crataegus 
around the same time, leading some workers to infer 
from patterns of morphological variation that apo-
mixis also occurred in Crataegus (Dickinson, 1999; 
Talent and Dickinson, 2005).

In fact, apomixis in Crataegus was not demon-
strated embryologically until a series of papers by 
Muniyamma and Phipps (1979a; 1984a; 1984b; 1985), 
followed by one from Ptak (1989), and more from 
Phipps’ students (Dickinson and Phipps, 1986; Smith 
and Phipps, 1988; Dickinson et  al., 1996). The occur-
rence of apomixis in some Crataegus species studied, 

and the contrast with a sexual species, was correlated 
with the degree of morphological variability in sam-
ples of local populations (topodemes; Dickinson and 
Phipps, 1985; Dickinson, 1986; Dickinson and 
Campbell, 1991). Subsequently, microsatellite data 
were used to demonstrate a parallel contrast in genetic 
variability in seed families in two of the same species 
(greater genetic variation in seed families of the sexual 
diploid shown to be morphologically more variable, 
compared to the apomictic tetraploid; Lo et  al., 
2010b). Both of these results have implications for 
interpreting Crataegus species defined only by con-
stant small differences in morphology.

Flow cytometry has become commonplace, and its 
use in estimating not only ploidy level (Dickson et  al., 
1992; Talent and Dickinson, 2005) but also breeding 
system (Matzk et  al., 2000; FCSS) have revolutionized 
these aspects of comparative biology. These flow cyto-
metric data have provided insights into whether and 
how apomictic seed develop, notably in response to, 
or independently of, the balance between maternal 
and paternal contributions to the endosperm (see 
below regarding pseudogamy; Talent and Dickinson, 
2007a; Talent and Dickinson, 2007b; Talent and 
Dickinson, 2007c; Talent, 2009; Vašková and Kolarčik, 
2019; Kolarčik et  al., 2022; see also Boechera, below). 
In the case of Rosaceae apomicts, this is a crucial 
point, since seed set in triploids and pentaploids, 
whether fertilized by their own pollen or the reduced 
pollen of diploids or tetraploids, depends on relaxation 
of a requirement for a 2:1 ratio of maternal to pater-
nal genomes in their endosperm (Talent, 2009; 
Kolarčik et  al., 2022). Not only that, it has become 
clear that fertilization of the unreduced female gam-
etes in individuals with gametophytic apomixis is 
probably the major route to polyploidization (Harlan 
and de Wet, 1975; Lewis, 1980; Talent and Dickinson, 
2007c). Ready access to data on ploidy level variation 
also enables workers to prioritize analyses of diploids 
in molecular phylogenetic studies, and to successfully 
interpret results, for example, where polyploids are 
included in phylogenies (see below).

Insights from flow cytometry, like those from 
embryology, by themselves say little about the condi-
tions under which seeds are produced. Controlled 
pollinations round out the picture by showing whether, 
and whose, pollination is needed for seed set to occur. 
Experiments by Bradshaw (1971), Love and Feigen 
(1978), and others (Dickinson and Phipps, 1986; 
Smith and Phipps, 1988; Wells and Phipps, 1989; 
Dickinson et  al., 1996; Talent and Dickinson, 2007c; 
Vašková and Kolarčik, 2019) have shown that diploid, 
but not polyploid, Crataegus are self-incompatible. 
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This accords with observations that gametophytic 
self-incompatibility prevails in the Rosaceae (Igic and 
Kohn, 2001), and may break down in polyploids 
(Lewis, 1947; Hauck et  al., 2006). These pollination 
experiments have also demonstrated that apomixis in 
Crataegus is pseudogamous, that is, endosperm fer-
tilization by one or both sperm nuclei is required for 
successful seed set (Dickinson et  al., 1996; Dickinson 
et  al., 2007; Talent and Dickinson, 2007c; Vašková 
and Kolarčik, 2019; Kolarčik et  al., 2022). These 
experiments have also demonstrated that in Crataegus 
any endosperm balance requirement is relaxed, 
enhancing seed set in triploids. Noirot et  al., (1997) 
have pointed out that in hermaphroditic pseudoga-
mous apomicts like Crataegus the evolutionarily stable 
strategy requires self-compatibility in such a way that 
male function increases with the rate of self-pollination. 
In Crataegus flowers, female function is limited to 
one to five locules per flower, each containing two 
superposed ovules of which only the lowermost has 
its micropyle adjacent to the funicular obturator and 
so is likely to be fertilized (Dickinson and Phipps, 
1986; Celotti, 1995). In this way Crataegus approaches 
the situation found in grasses (a single ovule per 
flower) for which Noirot et  al. (1997) developed a 
model predicting continued allocation to male func-
tion in pseudogamous apomicts, on the basis that 
self-compatibility will not be associated with inbreed-
ing depression because the embryo develops parthe-
nogenetically. Instead, self-compatibility contributes to 
fecundity (Dickinson et  al., 2007). And, contrary to 
predictions made by Cruden (1977), pollen production 
in Crataegus flowers is high regardless of ploidy level 
and breeding system (pollen fertility varies; Dickinson 
et  al., 1996; Dickinson and Phipps, 1986). As Charnov 
(1982) points out (without regard to apomixis), pollen 
serves not to ensure seed set, “but as an equivalent 
(to seeds) means toward fitness gain.”

Mid-20th century floristic and taxonomic treatments 
increasingly admitted that some taxa might be best 
interpreted as hybrids (e.g. Bradshaw, 1953; Bradshaw, 
1971; Byatt, 1975; Phipps, 1984; Christensen, 1992). 
Detailed studies involving confirmatory pollination 
experiments have been made (Bradshaw, 1971; Love 
and Feigen, 1978; Wells and Phipps, 1989), as well as 
studies of flowering phenology looking for opportu-
nities for pollen exchange between species (Figure 1 
in Campbell et  al., 1991; Kuhn and Ruprecht, 2022). 
Nevertheless, some (of the same) authors have depre-
cated the frequency and significance of hybridization 
(Phipps, 2005; Haines, 2011). Unrecognized hybridiza-
tion together with, in any case, scant cladistically rel-
evant morphological variation, undoubtedly contributed 

to the limited success of early applications of cladistic 
methods to Crataegus problems (Phipps, 1983b; Phipps, 
1984; Phipps, 1999; Dickinson and Love, 1997).

The opportunity to obtain DNA barcode sequences 
from the Canadian Center of DNA Barcoding at 
Guelph, Ontario, and to contribute to the Center’s 
Canadian DNA barcoding initiative, produced data 
from ITS2 and four plastid loci for a relatively large 
sample of mainly North American Crataegus taxa 
(Zarrei et  al., 2014; Zarrei et  al., 2015; Kuzmina et  al., 
2017). Except in the case of some diploid species, and 
well-known diploid × diploid hybrids (cf. Christensen 
et  al., 2014), these data were disappointingly difficult 
to interpret (Zarrei et  al., 2015). With just four plastid 
loci this was due to the limited sequence variability 
seen in Rosaceae with these loci (Potter et  al., 2007) 
and in the Maleae in particular (Campbell et  al., 
2007). Direct sequencing of ITS2 as a barcode locus 
in Crataegus, however, was thought to have led to 
randomly amplifying just one of the ribotypes present 
in an individual. In the case of individuals proving 
to be allopolyploids, this completely impaired the 
objective of unambiguous species identification 
(Hollingsworth et  al., 2011; Zarrei et  al., 2015). 
Instead, recognition of this possible scenario led to 
cloning and sequencing individual ribotypes, more 
than one in diploids, and proportionally more in poly-
ploids. This in turn corroborated the model of haw-
thorn polyploidization proposed by Lo (Figure 3; Lo, 
2008; Figure 5 in Lo et  al., 2010a), and led to dis-
covering the probable parentage of several apomictic 
allopolyploid hawthorn taxa in the sample (Figure 5 
in Zarrei et  al., 2014).

Besides enabling comparisons of the ribotype com-
plements of diploids and polyploids, analyses of DNA 
sequence data have been highly successful for relating 
the infrageneric classification of Crataegus to the phy-
logeny of the genus. Lo et al. (2007) studied 33 mostly 
diploid ingroup accessions (including two species then 
assigned to Mespilus), plus outgroups (Amelanchier, 
Aronia, Malus) and used nrITS and the LEAFY second 
intron, and four plastome intergenic spacers, to obtain 
two almost identical tree topologies. Only three spe-
cies that formed a clade on the nuclear tree were 
dispersed across the plastid tree. Subsequent work 
using the same and additional accessions, and increas-
ingly larger samples of the nuclear and (or) plastid 
genomes, have produced the same overall topology, 
while adding critical species to these trees that map 
so well to the now updated infrageneric classification 
(Lo et  al., 2009b; Lo and Donoghue, 2012; Ufimov 
and Dickinson, 2020; Ufimov et al., 2021; Liston et al., 
2021; Wu et  al., 2022; Figure 1 in Zarrei et  al., 2015).
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Hawthorn biogeography has been studied not only 
in relation to phylogeny (e.g. Lo et  al., 2009b; Ufimov 
and Dickinson, 2020) but also with respect to the 
impact of apomixis on geographic distributions (geo-
graphic parthenogenesis; Hörandl, 2006). Surveying 
Crataegus in Ontario, Canada, an area totally covered 
by glacial ice until 13,000 years ago, most of the 20 
native species studied are either triploid or tetraploid, 
and only four are diploid (Muniyamma and Phipps, 
1979b). A species complex like C. crus-galli, widely 
distributed in southern Ontario (and eastern North 
America generally) is exclusively apomictic and tet-
raploid there, but turns out to have diploids in 
Alabama and Georgia (Dickinson and Phipps, 1986; 
Talent and Dickinson, 2005; Talent and Dickinson, 
2007b). The more sparse Crataegus flora of western 
North America includes a native diploid species, C. 
rhodamae-loveae that is restricted to a largely 

unglaciated area in Oregon west of the Cascades 
Range, and adjacent portions of California and 
Washington (Dickinson and Han, 2023). Apomictic 
allopolyploid Crataegus species shown to be related 
to C. rhodamae-loveae (all in C. sect. Douglasianae) 
have much wider distributions, two of them (C. doug-
lasii and C. suksdorfii) extending not only well north 
of the glacial maximum but also to the east (C. doug-
lasii), with a disjunct presence in the previously gla-
ciated upper Great Lakes basin (Dickinson et  al., 
2021). The contrasting distributions of the diploid 
and allopolyploid species have been characterized with 
respect to climate parameters in a series of papers 
that show the diploids (and closely related autotrip-
loids) restricted to relatively warmer and more mesic 
habitats than the allopolyploids (Lo et  al., 2009a; Lo 
et  al., 2013; McGoey et  al., 2014; Coughlan et  al., 
2017; Dickinson et  al., 2021).

Figure 3. A  summary model based on the results of sequence and flow cytometry data (Lo et  al., 2010b), indicating parental 
lineages and gene flow in the diploid–polyploid complex of Crataegus suksdorfii sensu lato and C. douglasii. Solid lines indicate 
topologies resulting from PEPC data whereas dotted lines indicate PISTILLATA data. Four routes for polyploid formation are inferred 
(see Results and Discussion in Lo et  al., 2010b for details): (1) Autopolyploids have apparently arisen through fertilization of unre-
duced female gametes in diploids (Considine et  al., 2012) and have persisted in colder habitats (Lo et  al., 2013; McGoey et  al., 
2014); note that autotriploids treated elsewhere as C. gaylussacia (Dickinson et  al., 2021; Dickinson and Han, 2023) were not 
sampled by Lo et  al. (2010b). (2) Branches in gray indicate hybridization between 2x C. suksdorfii sensu lato (now named C. 
rhodamae-loveae; Dickinson & Han 2023) and 4x C. douglasii. (3) Bolded branches indicate the backcrossing of the allotriploids 
with their diploid progenitors. (4) Lines with arrows indicate recurrent gene flow between the sympatric 4x C. suksdorfii sensu 
stricto and 4x C. douglasii. This figure is reproduced from Lo (2008) with permission of the author and corresponds (with a minor 
correction made here, to Figure 5 in Lo et  al., 2010b).
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A second western diploid, Crataegus saligna (C. 
sect. Salignae), is the only species studied that exhibits 
a morphological feature (denser second and higher 
order leaf venation) that could be interpreted as pos-
sibly adaptive in more xeric habitats (Dickinson et  al., 
2021). Two closely related apomictic allopolyploid 
species (also C. sect. Salignae; similarly, C. douglasii 
and C. suksdorfii) lack this feature, but have wider 
geographic distributions (Dickinson et  al., 2021).

Coughlan et  al. (2014) examined relative biomass 
allocations to fruit components (mesocarp, endocarp, 
seed) in diploids, autotriploids, and allopolyploids and 
interpreted the results as showing greater allocation 
to establishment (seed mass) in diploids and autotrip-
loids, in contrast to greater allocation to dispersal 
(fruit mass) in the allopolyploids. Features promoting 
dispersal and differentiating allopolyploids from dip-
loids and autotriploids include not only polyploid 
self-compatibility but also greater environmental 
amplitude, greater allocation to dispersal, morpholog-
ical features (stamen number per flower), and (in the 
Salignae) leaf venation density, all of which are attrib-
utable to hybridization with the putative other 
(non-Douglasianae, non-Salignae) parent of the allo-
polyploids (Coughlan et  al., 2017; Dickinson et  al., 
2021; Liston et  al., 2021). In terms of climatic niches, 
only the autotriploids are markedly differentiated. The 
other taxa and ploidy levels studied in these western 
North American hawthorns are not greatly differen-
tiated ecologically, and diploids occupy subsets of the 
allopolyploid climate spaces. The most nearly compa-
rable study of European hawthorns (Kuhn and 
Ruprecht, 2023) is much more local in scale, and 
analyzes a wider range of habitat variables (climate, 
landscape, microenvironment) in order to contrast 
hybrids and their parent species without reference to 
breeding system.

D.  Brassicaceae

The Brassicaceae (mustard family, crucifers) is a glob-
ally distributed family, comprising 3,977 species across 
351 genera (German et al., 2023). It originated between 
the late Eocene and late Oligocene and split into two 
subfamilies (Aethionemoideae and Brassicoideae), with 
five supertribes in the latter (Arabodae, Brassicodae, 
Camelinodae, Heliophilodae, and Hesperodae), and a 
total of 58 tribes (BrassiToL: https://brassitol.vercel.
app/, Hendriks et  al., 2023). The Brassicaceae is 
important both scientifically and economically, housing 
the iconic model plant Arabidopsis thaliana and crops 
that feed billions of people worldwide.

Apomixis is relatively uncommon in the family 
Brassicaceae, primarily occurring in the tribe 
Boechereae, which currently includes nine genera 
(Mandáková et  al., 2020; Hay et  al., 2023). Seven of 
these (Anelsonia, Cusickiella, Nevada, Phoenicaulis, 
Polyctenium, Sandbergia, and Yosemitea) are mono- or 
bispecific and are confined to the western United 
States. The genus Borodinia includes eight species 
(Alexander et  al., 2013); seven of these are restricted 
to eastern North America and one is endemic to 
Siberia and coastal northeast Asia. Boechera, with 
more than 480 genetically distinct taxa (Li et  al., 
2017), is the most widespread genus in the tribe, 
distributed southward from Alaska through most of 
North America and extending to Greenland (1 spe-
cies) and another to Siberia (1 species) (Alexander 
et  al., 2013). All Boechereae genera and intrageneric 
Boechera clades are well defined, and a backbone phy-
logeny for tribe-wide evolutionary inference is avail-
able (Hay et  al., 2023).

The Boechereae appear to be a “hotspot” for the 
origin and diversification of apomictic taxa. 
Gametophytic apomixis has been documented or 
inferred in over 100 Boechera taxa, substantially aug-
menting genotype and phenotype diversity by stabi-
lizing the outcomes of reticulate evolution (Carman 
et al., 2019). Embryological investigations have revealed 
the occurrence of three distinct types of gametophytic 
apomixis in both diploid and triploid Boechera taxa: 
Antennaria-type diplospory, Taraxacum-type diplo-
spory, and Hieracium-type apospory (Windham et  al., 
2016; Carman et  al., 2019). The occurrence of the 
Antennaria-type in Boechera is rare, primarily observed 
in plants otherwise reproducing through Taraxacum-type 
diplospory. In contrast, Taraxacum-type diplospory 
and apospory are more prevalent in natural Boechera 
populations than sexual reproduction. Plants express-
ing apospory and diplospory are equally common, and 
in seven Boechera taxa, simultaneous occurrence of 
apospory and diplospory was uncovered, each at ele-
vated frequencies (Carman et  al., 2019). Furthermore, 
apospory has been embryologically documented in 
four additional genera within the Boechereae: diploid 
Borodinia laevigata (Carman et  al., 2019), di-, tri- and 
tetraploid Phoenicaulis cheiranthoides (Mandáková 
et  al., 2021), tetraploid Polyctenium fremontii 
(Mandáková et  al., 2020), and triploid Sandbergia 
whitedii (Mandáková et  al., 2020).

1.  Boechera
The genus Boechera exhibits a basic chromosome 
number x = 7, with sexual species being diploid 

https://brassitol.vercel.ap
https://brassitol.vercel.ap
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(2n  = 14).  Although primari ly autogamous 
(self-pollinating), natural occurrences of interspecific 
hybrids (allodiploids; 2n = 14, 15) involving sexual 
Boechera diploids are frequent (Kantama et  al., 2007; 
Beck et  al., 2012; Aliyu et  al., 2013; Alexander et  al., 
2015; Mandáková et  al., 2015; Li et  al., 2017; 
Mandáková et  al., 2020). These hybrids typically 
exhibit apomixis, which represents an escape from the 
(semi)sterility otherwise characteristic of allodiploid 
hybrids, facilitating their persistence within popula-
tions. Although prevalent in Boechera, the emergence 
of apomixis in allodiploid hybrids formed between 
two sexual diploid species is rare among other angio-
sperms (Carman, 1997). In this respect, many apomic-
tic Boechera also produce unreduced (2n) pollen, a 
feature generally rare among other angiospermous 
apomicts (Asker and Jerling, 1992). In Boechera, 2n 
sperm from apomictic diploids can fertilize 1n eggs 
of co-occurring sexual taxa, giving rise to novel and 
genomically unique triploid apomicts (2n = 21, 22) 
(Böcher, 1951; Alexander et  al., 2015; Li et  al., 2017; 
Mau et  al., 2021). Apomictic Boechera tetraploids also 
arise through this mechanism, albeit significantly less 
frequently (Schranz et  al., 2005; Aliyu et  al., 2010). 
Apomictic hybrids demonstrate somewhat broader 
ecological competencies compared to the sexual pro-
genitors (Windham and Al-Shehbaz, 2006; Alexander 
et  al., 2015; Windham et  al., 2016; Shah et  al., 2016; 
Rushworth et  al., 2018), but the major driver of niche 
divergence appears to be ploidy level (Mau et al., 2015).

The genome structure was reconstructed in 
Boechereae species across seven genera: Boechera, 
Borodinia, Cusickiella, Phoenicaulis, Polyctenium, 
Nevada, and Sandbergia (Mandáková et  al., 2015; Lee 
et  al., 2017; Mandáková et  al., 2020; Mandáková et  al., 
2021). All analyzed taxa shared a common 
seven-chromosome genome structure (x = 7). 
Comparative analysis with the sister tribe Halimolobeae 
(x = 8) indicated that the ancestral Boechereae genome 
(n = 7) originated from an older n = 8 genome through 
descending dysploidy, followed by the divergence of 
extant Boechereae taxa approximately eight million 
years ago (Mandáková et  al., 2020). While three chro-
mosomes (Boe4, 6, 7) retained their ancestral struc-
ture, five chromosomes underwent reshuffling via 
end-to-end translocation, two reciprocal transloca-
tions, and a pericentric inversion, resulting in the 
formation of chromosomes Boe1-3 and Boe5 
(Mandáková et  al., 2015; 2020). Despite the general 
genomic conservatism observed in most Boechereae 
genera, intra-tribal cladogenesis has occasionally been 
associated with chromosome rearrangements, partic-
ularly inversions (Mandáková et  al., 2020). Notably, 

a recent large pericentric inversion has been identified 
in Boechera stricta which controls ecologically import-
ant traits distinguishing populations (Lee et  al., 2017). 
This suggests that such chromosome rearrangements 
may play a crucial role in reproductive isolation 
during incipient speciation.

Because of its small genome (∼250 Mb), close evo-
lutionary relationship to A. thaliana (Song and 
Mitchell-Olds, 2007; Hendriks et  al., 2023), and nat-
urally occurring diploid sexual and diploid apomictic 
lines, the genus Boechera has become a subject of 
intense research interest. The existence of diploid 
apomictic lines shows that polyploidy is not a 
requirement for the expression of apomixis. Genomic 
in situ hybridization demonstrated that the Boechera 
apomicts are interspecific hybrids with variable num-
bers of parental chromosomes (Kantama et  al., 2007). 
This variation is caused by the substitution of 
homeologous parental chromosomes in apomictic 
hybrids. A second peculiarity is the presence of het-
erochromatic supernumerary chromosomes in 
apomictic genomes. Apomictic Boechera plants with 
15 chromosomes were described as early as in 1951 
(Böcher, 1951). Later studies described the supernu-
merary B-like chromosomes in aneuploid apomicts 
(2n = 2x + 1 = 15, 2n = 3x + 1 = 22) as being heteroch-
romatic and often smaller than the other chromo-
somes (Sharbel et  al., 2004; Sharbel et  al., 2005). As 
these chromosomes were absent in sexual diploids 
and present in apomictic diploid (2n = 15) and trip-
loid (2n = 22) lines, it was argued that B-like chro-
mosomes may contain genetic elements associated 
with the apomictic trait (Sharbel et  al., 2004; Sharbel 
et  al., 2005). Comparative analyses of the mitotic 
and meiotic chromosomes of sexual and apomictic 
lines demonstrated that all diploid apomicts have 
one highly heterochromatic (Het) chromosome. An 
additional smaller chromosome, referred to as Del 
(“deletion chromosome”), was found in diploid and 
triploid apomictic aneuploids (Kantama et  al., 2007). 
Later cytogenetic screening of diploid apomicts 
revealed that the Het chromosome in 14-chromosomal 
apomicts is one of the Boe1 homeologs, which 
encompasses genomic blocks A1, C1, and D, and 
exhibits expanded pericentromeric heterochromatin 
(Mandáková et  al., 2015). In aneuploid apomicts 
(2n = 15), telocentric Het´ (blocks A1 and C1) and 
Del (block D) chromosomes originated through 
breakage within the heterochromatin/repeat-rich Het 
centromere (centric fission) (Mandáková et  al., 2015). 
The stable inheritance of the heterochromatic fission 
chromosomes is probably due to the apomictic mode 
of reproduction. Notably, centric fission in Boechera 
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is the only example of this rearrangement (and 
ascending dysploidy) in the family Brassicaceae. 
Furthermore, the chromosome localization of the 
apomixis-associated factor UPGRADE2 on Boe1 
hom(e)ologs showed a significant increase in copy 
number on Het and Het´ in 2n = 14 and 2n = 15 
apomicts, respectively (Mau et  al., 2022). This finding 
indicates a possible functional link between the 
expansion of pericentromeric heterochromatin on 
Het and Het´ chromosomes and the amplification of 
UPGRADE2 gene copy number. The consistent pres-
ence of the UPGRADE2-bearing Het chromosomes 
in all apomictic lineages suggests its key role in con-
trolling the apomictic trait.

2.  Draba
Draba (Arabideae), is the most diverse genus in the 
family Brassicaceae, comprising over 420 species 
distributed across the Northern Hemisphere and 
Andean South America. Currently, 13 species of 
Draba have been proposed to exhibit apomixis: D. 
aretioides (Ptáček et  al., 2024), D. crassa (Price, 
1979; Decker, 2006), D. densifolia (Mulligan, 1976; 
Mulligan, 2021), D. exunguiculata (Price, 1979; Price 
and Rollins, 1991), D. globosa (Windham et  al., 
2023), D. grayana (Price, 1979; Price and Rollins, 
1991), D. novolympica (Mulligan, 1971; Mulligan, 
2021), D. oligosperma (Mulligan and Findlay, 1970; 
Mulligan, 1972), D. streptobrachia (Price, 1979; Price, 
1980), D. taylori (Al-Shehbaz and Mulligan, 2013; 
Mulligan, 2021), D. trichocarpa (Al-Shehbaz et  al., 
2010), D. ventosa (Mulligan, 1971), and D. weberi 
(Price and Rollins, 1991; Decker, 2006). These spe-
cies, except for D. aretioides, are deduced to produce 
seeds through apomixis, consistently yielding viable 
seeds despite disruptions in male meiosis, leading 
to indehiscent anthers and/or limited viable pollen. 
Autonomous apomixis was confirmed in Draba oli-
gosperma via emasculation experiments (Mulligan, 
1972). These twelve species are indigenous to the 
mountainous regions of western North America and 
demonstrate diverse levels of evolutionary success. 
Species like D. trichocarpa and D. weberi are very 
rare, each known from a single small population. 
Conversely, species such as D. densifolia, D. novolym-
pica, D. oligosperma, and D. ventosa are widely dis-
tributed across western United States and Canada. 
While the ploidy levels of three of the twelve species 
remain undetermined, the remaining nine are all 
polyploid. The most recent addition to the list of 
putative apomictic Draba species is D. aretioides. 
Apomixis was suggested in this species based on 

FCSS (Ptáček et  al., 2024) and requires further sup-
port. Notably, D. aretioides differs from the previ-
ously discussed taxa in its geographic distribution 
(Andean South America).

3.  Cardamine
The genus Cardamine (Cardamineae), encompassing 
approx. 200 species (Carlsen et  al., 2009), is widely 
distributed in temperate climates and occasionally 
exhibits weedy behavior. Embryological studies by 
Ančev et  al., (2013) have revealed that the Bulgarian 
triploid hybrid C. ×rhodopaea is capable of agamo-
spermy through Taraxacum-type meiotic diplospory. 
Another potential occurrence of apomixis in Cardamine 
was observed in the Swiss triploid hybrid C. ×insueta. 
Although Urbanska et  al., (1997) initially suggested 
polarized meiosis as the likely mechanism for seed 
production in this taxon, subsequent studies by 
Mandáková et  al. (2013) emphasized the critical role 
of unreduced (diplosporous) embryo sac production 
in the evolutionary trajectory of the species complex. 
Other genera within the Cardamineae tribe showing 
reproductive/genetic anomalies suggestive of apomixis 
include Rorippa (Bleeker and Matthies, 2005), 
Nasturtium (Bleeker et  al., 1999), and Leavenworthia 
(Edwards et  al., 2022).

4.  Iberis
In the small genus Iberis (approx. 25 species, 
Iberideae), embryological investigations of triploid 
Bulgarian populations of I. saxatilis have documented 
the production of viable seeds through diplospory and 
apospory (Yurukova-Grancharova et  al., 2004).

5.  Brassica: a case of inducible apomixis
In Brassica (Brassiceae), which encompasses most 
major Brassicaceae crops, cytological studies have 
identified developmental pathways in artificial crosses 
resembling those of known apomicts. For instance, 
Praekelt and Scott (2001) observed that artificial 
crosses between diploid B. oleracea and various other 
species exhibited two critical components of apomixis: 
the presence of unreduced embryo sacs and the inher-
ent ability for parthenogenesis. This phenomenon 
appears to be more pronounced in crosses between 
phylogenetically distant species, contributing to reports 
of agamospermy in artificial hybrids between B. napus 
and Raphanus sativus (Dobeš et  al., 2007; Ellerström, 
2008; Ellerström and Zagorcheva, 2009). Evidence for 
apomixis in natural populations, however, is so far 
missing.
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6.  Genera with doubtful records
Erysimum (Erysimeae) stands as the second most 
diverse genus in the mustard family, boasting approx-
imately 220 species primarily concentrated in Eurasia 
(Al-Shehbaz, 2012). Similar to the majority of Draba 
species discussed above, the presence of apomixis in 
Erysimum has been suspected from observations of 
abundant seed production in plants that yield little 
to no viable pollen. Erysimum inconspicuum is a 
widely distributed native species extensively studied 
by Mulligan (1966), who identified two distinct ploidy 
levels in the species. Another species, tentatively iden-
tified as E. hieracifolium, was hypothesized to be 
apomictic by Mulligan and Frankton (1967) due to 
irregular pollen meiosis, but this can also occur in 
sexual polyploids. Further evidence of apomixis is 
missing. This taxon, known for its aggressive weedi-
ness in eastern Canada, exhibits notable differences 
from typical European populations of E. hieracifolium 
s.s., including variations in ploidy level. It is specu-
lated that this taxon may have originated in situ 
through interactions between species that were geo-
graphically isolated prior to European colonization.

Parrya (Chorisporeae) comprises approximately 40 
species found across mountainous regions in central 
Asia, arctic Eurasia, and northern North America 
(Al-Shehbaz and German, 2013). In a study by 
Mosquin and Hayley (1966), diploid (2n = 14) and 
triploid (2n ≈ 21) individuals of P. arctica were 
encountered. They suggested a close morphological 
connection between Parrya and Boechera, noting their 
shared chromosome base number (x = 7). They pro-
posed that P. arctica, similar to Boechera, may exhibit 
facultative apomixis (Mosquin and Hayley, 1966). 
However, the authors did not provide standard infor-
mation on meiotic irregularities, pollen viability, or 
abundant seed production to support this inference 
of agamospermy, despite the presumed impairment of 
microsporogenesis in the triploid individual. 
Furthermore, recent molecular phylogenetic analyses 
did not confirm the close relationship between Parrya 
and Boechera (Hendriks et  al., 2023). Although P. 
arctica has often been cited as an established example 
of apomixis (Schmidt, 2020), considering the afore-
mentioned circumstances, it has been excluded from 
our compilation of well-documented cases of apomixis 
in the Brassicaceae.

We have also excluded a recent report of apomixis 
in Mancoa from our list. This genus, comprising eight 
species assigned to tribe Halimolobeae, is found in 
northern Mexico and Andean South America (Bailey 
et al., 2007). Ptáček et al., (2024) reported autonomous 

apomixis in a Bolivian sample of M. hispida, based 
on FCSS only. However, M. hispida is an annual spe-
cies, and apomictic annuals are exceptionally rare 
(Hörandl, 2010). If further confirmed through embry-
ological investigation, this finding would be significant 
due to the rarity of apomixis in both annual plants 
and non-North American mustard species. Moreover, 
the fact that M. hispida belongs to Halimolobeae, a 
sister tribe to the extensively apomictic Boechereae 
(Hay et  al., 2023; Hendriks et  al., 2023), makes this 
case even more interesting for further research.

In summary, apomixis is relatively uncommon but 
phylogenetically dispersed in Brassicaceae. Apomixis 
is most prevalent in the genus Boechera where it 
arises through both homoploid hybridization in dip-
loids and unreduced gamete formation leading to 
allopolyploidy or autopolyploidy (Carman et  al., 
2019). Extensive reticulate evolution and stabilization 
of hybrids via apomixis makes Boechera taxonomy 
very complex (Li et  al., 2017). While the majority 
of apomictic species in the group are endemic to 
western North America, this pattern may potentially 
diminish with additional sampling efforts. Most 
reports published to date infer the presence of apo-
mixis through indirect evidence, such as the devel-
opment of viable seeds in the absence of typical, 
meiotically-produced pollen. Future studies employ-
ing embryological techniques are anticipated to pro-
vide direct insights into the apomixis process.

E.  Rutaceae

Rutaceae consist of about 2,100 species in 154 genera 
and is mainly distributed in tropical and sub-tropical 
regions worldwide (Appelhans et al., 2021). The family 
is best known for the economically important Citrus 
species, hybrids and cultivars. Apomixis has been 
reported for several genera of Rutaceae, but it has 
only been studied in detail in Citrus (s.l., including 
Fortunella and Poncirus) and few Zanthoxylum (incl. 
Toddalia) species. Typically, apomictic Rutaceae repro-
duce via adventitious embryony and seeds are often 
polyembryonic (Naumova, 1993; Hojsgaard and 
Pullaiah, 2023). In two genera, Skimmia and Triphasia, 
apospory has been identified as the apomictic pathway 
(Desai, 1961; Hojsgaard and Pullaiah, 2023). Reports 
on apomixis of Rutaceae genera are often not based 
on the study of embryo sac development and/or flow 
cytometry, but instead on the occurrence of polyem-
bryony. Genera for which polyembryony has been 
reported include Aegle, Atalantia, Citrus, Conchocarpus 
(incl. Almeidea), Esenbeckia, Feroniella, Haplophyllum 
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[as Ruta], Murraya, Ptelea, Triphasia, and Zanthoxylum 
(Mauritzon, 1935; Webber, 1940; Hossain et  al., 1993; 
Carman, 1997; Kubitzki et  al., 2011; Hojsgaard and 
Pullaiah, 2023). Up to 40 embryos have been observed 
in a single Citrus seed, but normally only up to three 
develop (Ueno et  al., 1969; Kubitzki et  al., 2011). The 
occurrence of polyembryony does not necessarily 
mean that the taxon reproduces apomictically, since 
the polyembryonic condition could be due to more 
than one megasporocyte developing into an embryo 
sac, differentiation of an antipodal or synergid cell 
into an additional egg cell, or cleavage embryony, in 
which a zygote or young embryo separates into two 
or more units (Webber, 1940; Hojsgaard and Pullaiah, 
2023). However, as far as it is known, the additional 
embryos in all polyembryonic Rutaceae develop from 
nucellar tissue (Mauritzon, 1935; Bai and Lakshmanan, 
1982; Naumova, 1993).

In addition to the above-mentioned genera, apomixis 
has been proposed for Glycosmis pentaphylla because 
of the occurrence of ortho- and anorthopolyploidy in 
this species complex (i.e. even or odd number of chro-
mosome sets, respectively; Guerra, 1980; Samuel et  al., 
2001). Diploid, pentaploid and hexaploid cytotypes have 
been documented for this species (Samuel et  al., 2001; 
Mou and Zhang, 2012).

In total, apomixis has been reported from 13 out 
of 154 genera in the family. Seven of these belong to 
the Citrus subfamily Aurantioideae, which contains 
27 or 28 genera in total (Appelhans et  al., 2021) and 
one belongs to the monogeneric Haplophylloideae. 
The remaining five genera are part of the largest sub-
family Zanthoxyloideae and are not closely related 
(Appelhans et  al., 2021; Joyce et  al., 2023).

1.  Citrus
Citrus ranks among the economically most import-
ant crop genera in the world. Citrus is cultivated 
throughout the sub-tropical and tropical regions 
worldwide, and the natural distribution of the genus 
ranges from eastern and southern Asia to New 
Guinea, Australia and the southwest Pacific Islands 
(Kubitzki et  al., 2011; Mabberley, 2022). There has 
been much debate about the number of species in 
the genus, which varies from six to 157, depending 
on the author (Engler 1896; Tanaka, 1961). Currently, 
about 25 species are accepted for the genus 
(Mabberley, 2022). Apomixis in Citrus is known 
from several species, hybrids, and cultivars and has 
been observed in the three parental species (C. max-
ima [pomelo], C. medica L. [citron], C. reticulata 
[mandarin]), from which all commercially important 

hybrids are derived. The circumscription of the 
genus has been broadened as a consequence of 
molecular phylogenetic analyses (Bayer et  al., 2009), 
and the former genera Fortunella and Poncirus, that 
also contain apomictic species, are now treated as 
Citrus (Mabberley, 2022; Hojsgaard and Pullaiah, 
2023). As typical for Rutaceae, the apomictic path-
way in Citrus is adventitious embryony with often 
polyembryonic seeds (Naumova, 1993; Xu et  al., 
2021). Citrus pollen grains are viable and endosperm 
formation is the result of double fertilization 
(Naumova, 1993; Wang et  al., 2022). Molecular 
mechanisms that lead to apomixis in Citrus have 
recently been reviewed (Xu et  al., 2021), and CitRWP 
has been identified as a crucial gene for adventitious 
embryony (Xu et  al., 2021; Wang et  al., 2022). A 
knockdown of the gene resulted in exclusively sexual 
embryos and monoembryony, while the development 
of adventitious embryos was suppressed (Shimada 
et  al., 2018; Wang et  al., 2022).

2.  Zanthoxylum
With more than 220 species, Zanthoxylum is the larg-
est or second largest genus in Rutaceae and it has a 
pantropical distribution that extends to temperate 
regions in Northern America and Eastern Asia 
(Appelhans et  al., 2018; Reichelt et  al., 2021). 
Zanthoxylum used to be subdivided into three genera: 
Fagara, Toddalia, and Zanthoxylum s.str. (Appelhans 
et  al., 2018). While all Fagara and Toddalia species 
have biseriate flowers, Zanthoxylum s.str. species have 
very small and uniseriate flowers with a varying num-
ber of tepals (Reynel, 2017). The merging of Fagara 
and Toddalia into Zanthoxylum is supported by molec-
ular phylogenetic analyses, and Zanthoxylum s.str. is 
deeply nested within former Fagara species (Appelhans 
et  al., 2018; Reichelt et  al., 2021). Apomixis has so 
far been documented mainly for several species of 
Zanthoxylum s.str. (Liu et  al., 1987; Naumova, 1993; 
Fei et  al., 2021a; 2021b; 2021c), but polyembryony 
has been reported for Z. asiaticum (as Toddalia asi-
atica; Bai and Lakshmanan, 1982) and nucellar 
embryos have been documented for Z. oxyphyllum 
and Z. tragodes (as Z. spinifex), which belonged to 
Fagara in the past (Naumova, 1993; Hojsgaard and 
Pullaiah, 2023). Thus, apomixis in Zanthoxylum is 
probably not limited to the species with uniseriate 
flowers.

In contrast to Citrus, Zanthoxylum species are usu-
ally functionally dioecious, with female flowers pos-
sessing staminodes and male flowers that produce 
rudimentary carpels. Rarely, plants can be monoecious 
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or polygamodioecious, bearing hermaphroditic and 
unisexual flowers on the same inflorescence (Hartley, 
1966; Reynel, 2017). For the apomictic Z. americanum, 
plants with a smaller number of hermaphroditic flow-
ers, as well as “male” plants bearing some ripe fruits 
have been observed (Munter et al., 2018). Zanthoxylum 
acanthopodium, a close relative of the apomictic Z. 
bungeanum and Z. simulans (unpublished data M. 
Appelhans), for which the reproductive system is 
unknown, is known to be strictly functionally dioe-
cious throughout most of its distribution (E Pakistan, 
N India to SW China, N Myanmar and N Thailand), 
but populations with a disjunct distribution in north-
ern Sumatra appear to be exclusively hermaphroditic 
(Hartley, 1966). Thus, a pollen donor would be 
required in most species in case the endosperm devel-
opment required fertilization. Conclusive studies about 
the requirement of fertilization for endosperm devel-
opment are lacking, but viable pollen grains have been 
identified for the apomictic Z. americanum Mill., Z. 
bungeanum and Z. simulans (Liu et al., 1987; Naumova, 
1993; Munter et  al., 2018; Fei et  al., 2021a). Still, in 
these three species the development of seeds and 
endosperm without fertilization has been observed 
(Liu et al., 1987; Munter et al., 2018; Fei et al., 2021a). 
Fei et  al., (2021a) measured pollen germination in 
vitro and carried out a pollination experiment on Z. 
bungeanum and they recorded a low pollen germina-
tion rate, observed pollen tube formation, but no 
successful fertilization. These authors also studied 
differential gene expression and phytohormone con-
centrations in fruits developed from unfertilized ver-
sus fertilized flowers (Fei et  al., 2021a). They report 
that the concentration of ABA (abscisic acid) is 
increased in fruits developed from fertilized flowers 
and that key genes in the biosynthesis pathway of 
ABA are upregulated. Moreover, plants that had been 
pollinated showed an increased fruit setting rate as 
did plants that had been sprayed with exogenous ABA. 
The authors conclude that pollination has a positive 
effect on fruit set by influencing gene expression and 
production of phytohormones (mainly ABA), but 
endosperm production through double fertilization 
was not observed.

F.  Asteraceae

The cosmopolitan family Asteraceae, with more than 
1,600 genera and 25,000 species, is by far the largest 
family of Asterales (Stevens, 2020), and the only one 
in this order with apomictic genera. Noyes (2007) 
critically evaluated the records of apomictic reproduc-
tion in the family and confirmed 22 genera with the 

presence of (fully) functional apomixis. However, this 
number also depends on the taxonomic concept of a 
particular genus. For example, genus Hieracium in 
Noyes’ review included both Hieracium s. str. and 
Pilosella as subgenera, whereas now there is substantial 
evidence for a narrower generic concept (see below). 
Asteraceae genera with apomixis are concentrated in 
seven derived tribes (Astereae, Eupatoriae, Gnaphalieae, 
Heliantheae, Madieae, Inulae, and Lactuceae), while 
they are absent from the basal tribes that evolved in 
the Neotropics – the evolutionary cradle of the family 
(Noyes, 2007). In Asteraceae, autonomous apomixis 
is expressed as gametophytic diplospory (17 genera) 
or apospory (five genera), with no evidence for effec-
tive sporophytic adventitious embryony (Noyes, 2007).

Apomixis is associated with polyploidy and hybrid-
ity, which have profoundly shaped the evolutionary 
patterns and, consequently, the classification of 
apomicts within Asteraceae. In most apomictic genera, 
asexual representatives form a minority of recognized 
taxa, usually concentrated within a specific infrage-
neric group. However, in Hieracium, Pilosella and 
Taraxacum (all of the Lactuceae tribe), apomixis is 
very widespread and is by far the predominant mode 
of reproduction. Here we describe the phenomenon 
of apomixis and its evolutionary consequences in 
Hieracium and Pilosella.

Both genera belong to the subtribe Hieraciinae, 
which in the current circumscription also includes the 
sexually reproducing Mediterranean-Macaronesian 
genus Andryala and Hispidella, a monotypic annual 
genus endemic to the Iberian Peninsula (Kilian et  al., 
2009). Traditionally, the genus Pilosella has been treated 
as a subgenus of Hieracium, but there is ample evidence, 
i.e. morphological, cytological, embryological, genetic, 
ecological and phylogenetic evidence, that both genera 
should be treated separately (Zahn, 1921–1923; Asker 
and Jerling, 1992; Mráz, 2003; Suda et al., 2007; Chrtek 
et  al., 2009; Fehrer et  al., 2009; Hand et  al., 2015).

1.  Hieracium s.str.
Hieracium (excluding Pilosella) is naturally distributed 
in Eurasia, northwestern Africa and the Americas. 
The genus consists of two subgenera with contrasting 
reproductive modes and taxonomic diversity. While 
the subgenus Chionoracium, which is native to the 
Americas, consists of approximately 150 exclusively 
sexual diploid species, the subgenus Hieracium (here-
after Hieracium) occurs predominantly in Eurasia and 
represents a huge agamic complex with species num-
bers varying between 500 and 5,000, depending on 
the species concept (Zahn, 1921–1923; Beaman, 1990; 
Majeský et  al., 2017; Fehrer et  al., 2022).
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Hieracium consists of ca. 30 diploid species (2n = 18) 
and a vast number of morphologically more or less 
easily distinguishable polyploids with prevailing tri- 
(2n = 27) and tetraploids (2n = 36), and rare penta-
ploids (2n = 45) (Mráz et  al., 2019). Diploids occur in 
southern mountainous regions of the European Alpine 
System (the Eastern and Southern Carpathians, the 
Balkans, the Alps, the Pyrenees) and they are often 
geographically and/or ecologically isolated. In contrast, 
polyploids are widespread across the whole of Europe, 
showing a typical pattern of geographical partheno-
genesis.  Diploids are sexual and strictly 
self-incompatible, although an induced selfing (mentor 
effect) sometimes occurs in the presence of hetero-
specific pollen which can break down the strong spo-
rophytic self-incompatibility barrier on stigmas 
allowing germination of own pollen (Mráz, 2003; 
Mráz and Paule, 2006). This mechanism might 
strengthen the reproductive isolation of sexuals in 
frequent diploid-polyploid, and rare diploid-diploid, 
interspecific populations, where mixed pollen loads 
can be common (Mráz 2003). Apomixis, either obli-
gate or nearly obligate, was proved in all polyploids 
tested so far (reviewed by Mráz and Zdvořák, 2019), 
and therefore this mode of reproduction is expected 
to be present in all polyploid hawkweeds.

Apomixis in Hieracium is expressed as a mitotic 
diplospory of the Antennaria-type (Bergman, 1935). 
An important feature of diplospory is frequent pre-
cocious embryogenesis – a phenomenon in which 
embryogenesis starts before floret opening–, prevent-
ing eventual fertilization of the unreduced gamete 
(Bergman, 1935; Skawińska, 1963; Hand et  al., 2015). 
Pollen production, its size heterogeneity and viability 
vary considerably among apomictic hawkweeds. Many 
of them are completely pollen sterile, while others 
produce less pollen compared to sexual diploids and 
this pollen is heterogeneous in size (Chrtek, 1997; 
Slade and Rich, 2007; Mráz et  al., 2009; Chrtek et  al., 
2020). This is mainly due to severe developmental 
problems in the sporogenic tissue, and partly also to 
irregularities in chromosome pairing during meiosis 
(Rosenberg, 1917; 1927; Gentcheff and Gustafsson, 
1940). Residual sexuality in apomictic polyploids was 
suggested by Bergman (1941) and later by Hand et  al., 
(2015), who detected a small proportion of megaspore 
mother cells (MMCs) that underwent meiosis. The 
first evidence of functional facultative apomixis in the 
genus was published by Mráz and Zdvořák (2019). 
Using FCSS, they showed that approximately 0.4% of 
the seed progeny produced by apomictic polyploids 
were formed after fertilization of either reduced or 
unreduced embryo sacs resulting in BII or BIII hybrids, 

respectively. Despite a low frequency of facultative 
apomixis, given the ubiquity of polyploid hawkweeds 
and their large population sizes, this process could 
be a relevant source of new variation in the genus.

Recent interspecific hybridization between sexual 
diploid taxa has been confirmed in a few cases only, 
mostly due to their geographical or ecological sepa-
ration (Mráz et  al., 2005; 2011; Chrtek et  al., 2006). 
Experimental crosses between sexually diploid species 
resulted in morphologically intermediate diploid F1 
hybrids, but these were highly seed sterile likely due 
to problematic meiosis caused by genomic incompat-
ibilities of parental taxa (Mráz and Paule, 2006). In 
this view, polyploidization closely associated with apo-
mixis, which ensures reproduction by seeds, can pro-
vide Hieracium interspecific hybrids with an 
evolutionary perspective, or an escape from sterility 
in the words of Darlington (1939). Interestingly, dip-
loid F1 hybrids produce high quantities of 
homogeneous-sized pollen, suggesting greater impor-
tance of F1 hybrids as putative pollen donors (Mráz 
and Paule, 2006; Chrtek et  al., 2020). In contrast to 
the currently rare natural interspecific hybridization, 
patterns of morphological and molecular variation in 
the genus suggest massive reticulation in the past, 
involving both diploid and polyploid species with not 
yet stabilized asexual reproduction and polyploid 
apomicts with rare residual sexuality. Recurrent 
polyploidization was accompanied by multiple shifts 
to apomixis, which allowed the survival of selected 
polyploid lineages (Fehrer et  al., 2009; Krak et  al., 
2013; Mráz et  al., 2019; Chrtek et  al., 2020). As a 
result of these processes, the vast majority of 
Hieracium apomicts are allopolyploids, while auto-
polyploids appear to be extremely rare, as suggested 
for H. alpinum (Mráz et  al., 2009). In the past, 
reticulation events often occurred in secondary con-
tact zones, as many taxa involved in these hybrid-
ization events are currently allopatric (Fehrer et  al., 
2009). The geographic distribution of “frozen” com-
binations of ancestral parental genomes in obligate 
or nearly obligate apomicts provides an excellent 
tool for tracing past biogeographic processes (Mráz 
et  al., 2019).

The young origin of the genus, dated to ∼3.1 Mya, 
rapid diversification with shared ancestral polymor-
phism and incomplete lineage sorting, massive reticu-
lation and frequent extinctions are the main factors that 
have deeply shaped the phylogenetic patterns in the 
genus (Fehrer et  al., 2009; Krak et  al., 2013; Fehrer 
et  al., 2022). Of the molecular markers used so far, i.e. 
nuclear ITS, ETS, two low-copy nuclear genes and two 
cpDNA loci, only ETS provided the best approximation 
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for resolving species relationships (Fehrer et  al., 2009; 
Krak et  al., 2013). The ETS-based tree suggests two 
supported groups, a slightly older “eastern” group 
including diploids from the Carpathians, Balkans and 
the eastern Alps and widespread H. umbellatum, and 
the “western” group including diploid taxa from western 
Europe (Fehrer et  al., 2009; Mráz et  al., 2019; Fehrer 
et  al., 2022; Figure 4). This differentiation correlates 
with haploid genome size being significantly higher in 
taxa from the eastern clade (Chrtek et  al., 2009). The 
use of remaining markers often results in polytomies, 
but these markers, especially low-copy nuclear genes, 

have allowed the detection of parental alleles and the 
identification of multiple origins of allopolyploid 
apomicts (Mráz et  al., 2019; Chrtek et  al., 2020). 
Population genetic approaches (allozymes, RAPDs, 
AFLPs) revealed the presence of one or a few unique 
multilocus genotypes for particular apomictic microspe-
cies thus supporting their recognition (e.g. Shi et  al., 
1996; Mráz et  al., 2001; Štorchová et  al., 2002; Chrtek 
et  al., 2007; Ronikier and Szeląg, 2008). Substantially 
higher genetic variation suggesting polytopic origin was 
found in widespread triploid H. alpinum (Shi et  al., 
1996; Štorchová et  al., 2002).

Figure 4.  Phylogenetic Bayesian tree based on the most complete sampling of diploid species of Hieracium s.str. and the cloned 
ETS region (after Mráz et  al., 2019, updated). Diploid taxa are grouped into two main clades, the Western and the Eastern, accord-
ing to the geographic distribution of diploids. Two triploid apomictic species were also included: ‘H. racemosum (3x)’ (in green), 
whose ETS alleles clustered with the diploid H. racemosum, and the allotriploid ‘H. telekianum (3x)’ (in black bold) which shows 
three divergent alleles, each related to one of three different parental diploid species: H. vranceae, H. pojoritense, and H. sparsum. 
For more details see Mráz et  al., (2019) (copyright with the authors).
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The reticulate pattern of morphological variation 
in both Hieracium and Pilosella was already recog-
nized by Nägeli (1866), who proposed a system of 
basic and intermediate species. The former species 
have a unique morphology, while the latter combine 
morphological characteristics of two or more basic 
species and are thought to be the result of hybridiza-
tion between basic species (Zahn, 1921–1923; Figure 
5). This system thus provides an excellent research 
framework for testing hybridogeneous origins and for 
the quantitative assessment of the genomic contribu-
tion of putative parental taxa. Using an integrative 
approach that included ploidy level and reproductive 
mode analyses, multivariate morphometrics, multiple 
molecular markers, and cytogenetics (Genomic in-situ 
hybridization and Fluorescence in-situ hybridization), 
Chrtek et  al., (2020) demonstrated the multiclonal 
character of two allotriploid species – H. pallidiflorum 
and H. picroides, for which the morphological 

differentiation clearly corresponds to the inverse 
genome dosage of both parental taxa involved in the 
origin of both allotriploid apomicts, thus confirming 
the pattern already suggested by Zahn (Zahn, 1921–
1923; Figure 5).

Taxonomic treatments of Hieracium vary between 
different European authors. The so-called Central 
European school of “hieraciology” accepts broadly 
defined species divided into subspecies, varieties, etc. 
(Zahn, 1921–1923; recently, e.g. Greuter, 2007; Greuter 
and Raab-Straube, 2008), while the Scandinavian, 
British, and Russian schools, including some other 
botanists, use a narrower species concept and treat 
all morphologically recognizable and constant forms 
at species rank (recently, e.g. Szeląg, 2003; Chrtek 
et  al., 2007; Tennant and Rich, 2008; Tyler and 
Jönsson, 2013; Tyler, 2017). Schuhwerk (2002) sug-
gested treating fixed, morphologically distinct taxa, 
exceeding the framework of broad species as (micro)
species, while treating as subspecies those with mor-
phologically minor deviations with similar chorolog-
ical and/or ecological behavior.

Here, firstly, we propose to adopt a broader taxo-
nomic concept for sexual diploid taxa due to the 
greater and continuous variation caused and main-
tained by ongoing gene flow (Mráz et  al., 2019). 
Second, apomictic allopolyploids derived from differ-
ent or the same parental combinations, which are 
morphologically and genetically well differentiated 
entities, should be recognized at the species level. By 
contrast, entities that differ from each other only by 
a few and usually minute characters and that are likely 
to have arisen from the same or related hybrid com-
binations or by autopolyploidization of diploid lin-
eages showing more or less continuous variation, 
should be merged into more broadly defined species.

2.  Pilosella
Pilosella is native to Eurasia and northwestern Africa 
and has been introduced and often naturalized in the 
Americas, Australia and New Zealand (Zahn, 1921–
1923; Chapman et  al., 2000; Williams and Holland, 
2007). The number of recognized species depends on 
the adopted concept. Recently, 122 “collective” (basic 
and intermediate together) species have been recog-
nized in the genus (Bräutigam and Greuter, 2007).

Although closely related to Hieracium, Pilosella dif-
fers greatly in the type and frequency of apomixis. 
Whereas in Hieracium we can mostly see apomictically 
“frozen” results of past evolutionary processes, in 
Pilosella we can see evolution happening right in front 
of our eyes. This is because Pilosella has a significantly 
higher incidence of facultative sexuality than 

Figure 5.  Morphological relationships of basic (hatched larger 
circles, species epithets in bold larger letters) and intermediate 
species (solid smaller circles, species epithets in normal smaller 
letters) showing morphological affinity to a basic species 
Hieracium intybaceum (in the center) as proposed by Zahn 
(redrawn from Zahn 1921: 744, Figure 54). This scheme (a 
hypothesis) illustrates putative origins of intermediate species 
based on sharing of basic species’ phenotypes. The position of 
two intermediate allotriploid species (both in magenta) – H. 
pallidiflorum morphologically closer to the basic H. intyba-
ceum, and conversely, H. picroides closer to the basic H. pren-
anthoides – was confirmed by morphometric, molecular and 
cytogenetic analyses; the latter approach revealed two intyba-
ceum and one prenanthoides subgenomes in H. pallidiflorum, 
and the reverse pattern, i.e. two prenanthoides subgenomes 
and only one intybaceum subgenome in H. picroides (Chrtek 
et  al., 2020).
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Hieracium. In addition to frequent homo- and het-
eroploid hybridization, the extensive morphological 
and genetic variation in Pilosella is also caused by the 
co-occurrence of sexual and apomictic types with 
considerable variation of cytotypes, and frequent veg-
etative clonal growth, which also plays a crucial role 
in the establishment and evolution of new cytotypes 
(Krahulcová et  al., 2000; Šingliarová et  al., 2023).

In natural populations, Pilosella occurs at seven 
different ploidy levels, ranging from diploid (2n = 18) 
to octoploid level (2n = 72), and the majority of species 
are represented by more than one ploidy level with 
the highest cytotypic variation (five ploidies) recorded 
in P. echioides (Trávníček et  al., 2011) and the auto-
polyploid P. rhodopea (Šingliarová et  al., 2019). 
Diploids are sexual and strictly self-incompatible, but 
autogamy can be induced by a mixture of heterospe-
cific pollen via mentor effects (Krahulcová et  al., 
1999). The relationship between ploidy and mode of 
reproduction in polyploids is much more complex 
than in Hieracium and varies between among. 
Polyploids can be sexual (up to the hexaploid level) 
or apomictic with varying degrees of residual sexuality 
(up to 10% of the resulting progeny; Krahulcová et  al., 
2000; 2014). Recent hybrids are either sterile or have 
a variable breeding system with high levels of residual 
sexuality and, consequently, extremely variable prog-
eny. This can include polyhaploids resulting from a 
parthenogenetic development of reduced female gam-
etes, often nonviable or sterile, which occasionally 
duplicate their genome, thus completing the 
polyploid-polyhaploid-polyploid cycle (Krahulec 
et  al., 2011).

Homo- and heteroploid hybridization is very com-
mon in Pilosella, and both basic and intermediate 
(hybridogeneous) species as well as recent hybrids can 
participate as parents. Such hybridization can involve 
both sexuals and (facultative) apomicts, and the latter 
can act as both pollen donor and seed parent (Gadella, 
1987; Krahulcová et  al. 2000; Fehrer et  al. 2007b). 
Consequently, such hybridization events often result 
in a huge diversity of progeny. For instance, experi-
mental crosses between facultatively apomictic hexa-
ploid P. rubra (an intermediate hybridogeneous species 
between P. aurantiaca and P. officinarum) and sexual 
tetraploid P. officinarum resulted in three progeny 
classes: apomictic (hexaploid progeny, ca. 88%), hap-
loid parthenogenetic (triploid progeny, ca. 4%) and 
hybrid (P. aurantiaca × officinarum, ca. 8%), which 
included pentaploids (3n + 2n reduced gametes), hep-
taploids (3n reduced + 4n unreduced gametes), and 
octoploids (6n unreduced + 2n reduced gametes) 
(Krahulcová et  al. 2004; Krahulec et  al. 2006). Similar 

diversity has been observed in open-pollinated plants 
of the same species under field conditions (Doležal 
et  al. 2020).

In contrast to the genus Hieracium, apomixis in 
Pilosella is expressed as apospory of the Hieracium-type 
(unreduced 8-nucleate embryo sac anatomically sim-
ilar to the Polygonum-type) and is often facultative 
(Rosenberg, 1906). Facultative apomixis has been 
demonstrated cytoembryologically in several species, 
such as the polyploid complex of P. aurantiaca (studies 
by A. Skalińska, reviewed in Krahulcová et  al., 2000; 
Koltunow et  al., 1998), P. officinarum (Turesson, 1972; 
Pogan and Wcisło, 1995), P. caespitosa (Skalińska and 
Kubień, 1972), and more recently in 16 species, nat-
ural and experimental hybrids (Hand et  al., 2015). 
Male meiosis appears to be regular in some tetraploid 
apomicts (Christoff, 1942). Even in apomicts with an 
odd number of chromosome sets, microsporogenesis 
is less disturbed than megasporogenesis (e.g. P. offic-
inarum, Pogan and Wcisło, 1995). Pentaploids can 
thus serve as pollen donors (e.g. in P. officinarum, 
Gadella, 1987; 1991; 1992). Pollen analyses revealed 
no significant differences in pollen staining between 
sexuals, apomicts and female-sterile or semi-sterile 
plants. In contrast, the effects of both ploidy level 
and plant origin were significant (Rotreklová, 2004; 
Rotreklová and Krahulcová, 2016).

Pilosella has become an important model to dis-
entangle the genetic basis of apomixis. Two dominant 
independent loci have been identified: the LOA (LOSS 
OF APOMEIOSIS) locus is required for apomeiosis 
(apospory) and suppression of the sexual pathway, 
while the LOP (LOSS OF PARTHENOGENESIS) 
enables autonomous embryo development (Catanach 
et al., 2006; Koltunow et al., 2011; Hand and Koltunow, 
2014). A third locus controlling autonomous endo-
sperm formation (AutE) has also been identified 
(Hand et  al., 2015; Bicknell et  al., 2016).

Phylogenetic relationships in Pilosella have been 
little studied. Of the molecular markers used, i.e. the 
nuclear ITS and two cpDNA loci, only ITS results 
are consistent with morphology and other evidence 
and are therefore considered to reflect the true phy-
logenetic relationships among the basic Pilosella spe-
cies (Fehrer et  al., 2007a). In contrast, variation in 
the plastid markers divided Pilosella into two haplo-
type groups, named Pilosella I and II, with partially 
distinct but highly overlapping geographic ranges (the 
former having a more westerly distribution in Europe 
compared to the latter) (Fehrer et  al., 2007a). This 
analysis nested separately each of the closely related 
Mediterranean genera Hispidella and Andryala within 
the Pilosella I and the Pilosella II groups, respectively. 
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Chloroplast capture events were proposed as the most 
likely explanation for these incongruencies between 
plastid and nuclear DNA markers (Fehrer et al., 2007a).

As a consequence of the ongoing gene flow across 
ploidies and reproductive modes, and thus a wider 
and more continuous morphological and genetic vari-
ation, the recently proposed infrageneric classification 
and species concept in Pilosella are broader than in 
Hieracium (Bräutigam and Greuter, 2007). This clas-
sification includes (i) more or less broadly defined 
basic species and aggregates (with species and sub-
species), and (ii) intermediate (hybridogeneous), 
so-called “collective” species. The latter are of very 
variable nature and value: they may include only 
newly formed primary hybrids or correspond to stable 
hybridogenous species occurring independently of 
their parents. They often include both types, usually 
occurring in different regions (Bräutigam and 
Greuter, 2007). Other concepts were summarized and 
discussed in detail in Schuhwerk (2002) and Majeský 
et  al., (2017).

V.  Conclusions and outlook

Our survey reveals that much more work is still 
needed before we can have a defined view of the role 
apomixis plays -if any- on macroevolution and in 
shaping the angiosperm phylogeny. Reliable assess-
ments of occurrences of apomixis in angiosperms like 
that of Hojsgaard et  al., (2014b), Hojsgaard and 
Pullaiah (2023) or Hörandl (2024), including reexam-
ination of doubtful cases, will certainly provide an 
unbiased outlook of the consequences of apomixis in 
plants. The great diversity of developmental pathways, 
with multiple origins of various modes of apomixis 
in angiosperms, is a major problem for delineating 
one singular scheme for the evolution of apomixis. 
Our review further emphasizes that apomixis cannot 
be seen in isolation from embryological features, 
breeding  systems (se l f -compat ibi l i ty  vs . 
self-incompatibility), and from cytology and ploidy 
levels. Cytogenetic analyses are promising for under-
standing origins of apomixis, as exemplified in 
Boechera and Hieracium. Future efforts should also 
include assessments on species from the many families 
and genera of angiosperms that have not been stud-
ied so far.

Major progress in phylogenetic/phylogenomic anal-
yses and also experimental work established that apo-
mixis frequently arises from hybridization, in 
connection with polyploidy or on the diploid level 
(as in exemplified in Boechera); see reviews in 
Hojsgaard and Hörandl (2019) and Hojsgaard and 

Pullaiah (2023). Beside the assessment of reticulate 
relationships, the widely used FCSS method allows 
for a large-scale quantification of facultative apomixis, 
and for detection of ploidy shifts in the offspring (e.g. 
Mráz and Zdvořák, 2019). Furthermore, environmental 
influence on mode of reproduction and biogeograph-
ical trends can be screened efficiently. The method 
thus has the potential to give insights into the 
short-term evolutionary dynamics of apomixis. 
However, accurate interpretation of FCSS patterns 
should be based on a solid knowledge of embryo sac 
formation in a studied taxon (typically genus), ploidy 
level of plants and further biological traits. 
Understanding the mechanisms of origins of apomixis 
in natural populations, combined with genomic anal-
yses, will also improve our insights into the genetic 
basis of apomixis. So far, our survey suggests multiple 
pathways to apomixis, including also environmental 
influence, which would infer diverse and complex 
genetic and epigenetic control mechanisms. Still, the 
long-term fate of apomictic lineages is unclear. 
Theoretically an apomictic complex could persist for 
quite some time via residual sexuality and clonal turn-
over. Empirically it is still unclear how long in evo-
lutionary time apomictic lineages may exist in plants 
before mutational decay would drive them to extinc-
tion (Hodač et  al., 2019; Hörandl, 2024). Despite their 
reduced genetic variation when compared to related 
sexuals, apomictic lineages could increase their evo-
lutionary potential through environmentally-triggered 
adaptive and heritable epimutations (Verhoeven and 
Preite, 2014) as has been shown in plants reproducing 
by vegetative growth (e.g. Rendina González et  al., 
2016). However, more empirical evidence about this 
process in apomictic plants is much needed. 
Furthermore, it is still not well documented with phy-
logenetic analyses whether permanent reversals from 
apomictic lineages to obligate sexual lineages are pos-
sible (e.g. Chapman et  al., 2000). Cytoembryological 
or FCSS analysis alone gives just a “snapshot” of the 
versatile modes of reproduction that may exist in 
parallel in an evolutionary lineage, which makes it 
impossible to assess ancestral states. For these ques-
tions, whole-genome analyses and phylogenomics, also 
for wild plants, are most wanted to understand better 
the long-term genome evolution and functionality of 
apomictic plants.

The great diversity of apomictic pathways men-
tioned above, and the broad taxonomic distribution, 
further hampers the applications of taxonomic con-
cepts, especially on the species level. The fact that 
apomixis has emerged independently in evolutionarily 
divergent genome lineages that show different 
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responses in terms of genomic dosage, developmental 
flexibility, and ecological plasticity, also prevent a uni-
fied use of a single species concept for all apomicts. 
Many phenotypically described agamospecies do not 
fulfill the criterion of species being an evolutionary 
lineage, and case-by-case decisions are needed 
(Hörandl, 2022). For evolutionary species concepts, 
the many evolutionary pathways result necessarily in 
a pluralism of concepts and taxonomic treatments, as 
summarized here. Understanding better short- and 
long-term evolution of apomictic lineages is crucial 
for well-founded taxonomic treatments.
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